Back to Search Start Over

Avalanches and many-body resonances in many-body localized systems

Authors :
Alan Morningstar
Luis Colmenarez
Vedika Khemani
David J. Luitz
David A. Huse
Source :
Physical Review B
Publication Year :
2022
Publisher :
American Physical Society (APS), 2022.

Abstract

We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some "landmarks" within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).<br />23 pages, 17 figures, v2 contains updated avalanche numerics and discussion, v3 contains minor clarifications

Details

ISSN :
24699969 and 24699950
Volume :
105
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....bdae5f768245b47fc2fa1b98b1a4614f