14 results on '"Kikuchi, Ryota"'
Search Results
2. DOCK2 is involved in the host genetics and biology of severe COVID-19
- Author
-
Namkoong, Ho, Edahiro, Ryuya, Takano, Tomomi, Nishihara, Hiroshi, Shirai, Yuya, Sonehara, Kyuto, Tanaka, Hiromu, Azekawa, Shuhei, Mikami, Yohei, Lee, Ho, Hasegawa, Takanori, Okudela, Koji, Okuzaki, Daisuke, Motooka, Daisuke, Kanai, Masahiro, Naito, Tatsuhiko, Yamamoto, Kenichi, Wang, Qingbo S., Saiki, Ryunosuke, Ishihara, Rino, Matsubara, Yuta, Hamamoto, Junko, Hayashi, Hiroyuki, Yoshimura, Yukihiro, Tachikawa, Natsuo, Yanagita, Emmy, Hyugaji, Takayoshi, Shimizu, Eigo, Katayama, Kotoe, Kato, Yasuhiro, Morita, Takayoshi, Takahashi, Kazuhisa, Harada, Norihiro, Naito, Toshio, Hiki, Makoto, Matsushita, Yasushi, Takagi, Haruhi, Aoki, Ryousuke, Nakamura, Ai, Harada, Sonoko, Sasano, Hitoshi, Kabata, Hiroki, Masaki, Katsunori, Kamata, Hirofumi, Ikemura, Shinnosuke, Chubachi, Shotaro, Okamori, Satoshi, Terai, Hideki, Morita, Atsuho, Asakura, Takanori, Sasaki, Junichi, Morisaki, Hiroshi, Uwamino, Yoshifumi, Nanki, Kosaku, Uchida, Sho, Uno, Shunsuke, Nishimura, Tomoyasu, Ishiguro, Takashi, Isono, Taisuke, Shibata, Shun, Matsui, Yuma, Hosoda, Chiaki, Takano, Kenji, Nishida, Takashi, Kobayashi, Yoichi, Takaku, Yotaro, Takayanagi, Noboru, Ueda, Soichiro, Tada, Ai, Miyawaki, Masayoshi, Yamamoto, Masaomi, Yoshida, Eriko, Hayashi, Reina, Nagasaka, Tomoki, Arai, Sawako, Kaneko, Yutaro, Sasaki, Kana, Tagaya, Etsuko, Kawana, Masatoshi, Arimura, Ken, Takahashi, Kunihiko, Anzai, Tatsuhiko, Ito, Satoshi, Endo, Akifumi, Uchimura, Yuji, Miyazaki, Yasunari, Honda, Takayuki, Tateishi, Tomoya, Tohda, Shuji, Ichimura, Naoya, Sonobe, Kazunari, Sassa, Chihiro Tani, Nakajima, Jun, Nakano, Yasushi, Nakajima, Yukiko, Anan, Ryusuke, Arai, Ryosuke, Kurihara, Yuko, Harada, Yuko, Nishio, Kazumi, Ueda, Tetsuya, Azuma, Masanori, Saito, Ryuichi, Sado, Toshikatsu, Miyazaki, Yoshimune, Sato, Ryuichi, Haruta, Yuki, Nagasaki, Tadao, Yasui, Yoshinori, Hasegawa, Yoshinori, Mutoh, Yoshikazu, Kimura, Tomoki, Sato, Tomonori, Takei, Reoto, Hagimoto, Satoshi, Noguchi, Yoichiro, Yamano, Yasuhiko, Sasano, Hajime, Ota, Sho, Nakamori, Yasushi, Yoshiya, Kazuhisa, Saito, Fukuki, Yoshihara, Tomoyuki, Wada, Daiki, Iwamura, Hiromu, Kanayama, Syuji, Maruyama, Shuhei, Yoshiyama, Takashi, Ohta, Ken, Kokuto, Hiroyuki, Ogata, Hideo, Tanaka, Yoshiaki, Arakawa, Kenichi, Shimoda, Masafumi, Osawa, Takeshi, Tateno, Hiroki, Hase, Isano, Yoshida, Shuichi, Suzuki, Shoji, Kawada, Miki, Horinouchi, Hirohisa, Saito, Fumitake, Mitamura, Keiko, Hagihara, Masao, Ochi, Junichi, Uchida, Tomoyuki, Baba, Rie, Arai, Daisuke, Ogura, Takayuki, Takahashi, Hidenori, Hagiwara, Shigehiro, Nagao, Genta, Konishi, Shunichiro, Nakachi, Ichiro, Murakami, Koji, Yamada, Mitsuhiro, Sugiura, Hisatoshi, Sano, Hirohito, Matsumoto, Shuichiro, Kimura, Nozomu, Ono, Yoshinao, Baba, Hiroaki, Suzuki, Yusuke, Nakayama, Sohei, Masuzawa, Keita, Namba, Shinichi, Suzuki, Ken, Naito, Yoko, Liu, Yu-Chen, Takuwa, Ayako, Sugihara, Fuminori, Wing, James B., Sakakibara, Shuhei, Hizawa, Nobuyuki, Shiroyama, Takayuki, Miyawaki, Satoru, Kawamura, Yusuke, Nakayama, Akiyoshi, Matsuo, Hirotaka, Maeda, Yuichi, Nii, Takuro, Noda, Yoshimi, Niitsu, Takayuki, Adachi, Yuichi, Enomoto, Takatoshi, Amiya, Saori, Hara, Reina, Yamaguchi, Yuta, Murakami, Teruaki, Kuge, Tomoki, Matsumoto, Kinnosuke, Yamamoto, Yuji, Yamamoto, Makoto, Yoneda, Midori, Kishikawa, Toshihiro, Yamada, Shuhei, Kawabata, Shuhei, Kijima, Noriyuki, Takagaki, Masatoshi, Sasa, Noah, Ueno, Yuya, Suzuki, Motoyuki, Takemoto, Norihiko, Eguchi, Hirotaka, Fukusumi, Takahito, Imai, Takao, Fukushima, Munehisa, Kishima, Haruhiko, Inohara, Hidenori, Tomono, Kazunori, Kato, Kazuto, Takahashi, Meiko, Matsuda, Fumihiko, Hirata, Haruhiko, Takeda, Yoshito, Koh, Hidefumi, Manabe, Tadashi, Funatsu, Yohei, Ito, Fumimaro, Fukui, Takahiro, Shinozuka, Keisuke, Kohashi, Sumiko, Miyazaki, Masatoshi, Shoko, Tomohisa, Kojima, Mitsuaki, Adachi, Tomohiro, Ishikawa, Motonao, Takahashi, Kenichiro, Inoue, Takashi, Hirano, Toshiyuki, Kobayashi, Keigo, Takaoka, Hatsuyo, Watanabe, Kazuyoshi, Miyazawa, Naoki, Kimura, Yasuhiro, Sado, Reiko, Sugimoto, Hideyasu, Kamiya, Akane, Kuwahara, Naota, Fujiwara, Akiko, Matsunaga, Tomohiro, Sato, Yoko, Okada, Takenori, Hirai, Yoshihiro, Kawashima, Hidetoshi, Narita, Atsuya, Niwa, Kazuki, Sekikawa, Yoshiyuki, Nishi, Koichi, Nishitsuji, Masaru, Tani, Mayuko, Suzuki, Junya, Nakatsumi, Hiroki, Ogura, Takashi, Kitamura, Hideya, Hagiwara, Eri, Murohashi, Kota, Okabayashi, Hiroko, Mochimaru, Takao, Nukaga, Shigenari, Satomi, Ryosuke, Oyamada, Yoshitaka, Mori, Nobuaki, Baba, Tomoya, Fukui, Yasutaka, Odate, Mitsuru, Mashimo, Shuko, Makino, Yasushi, Yagi, Kazuma, Hashiguchi, Mizuha, Kagyo, Junko, Shiomi, Tetsuya, Fuke, Satoshi, Saito, Hiroshi, Tsuchida, Tomoya, Fujitani, Shigeki, Takita, Mumon, Morikawa, Daiki, Yoshida, Toru, Izumo, Takehiro, Inomata, Minoru, Kuse, Naoyuki, Awano, Nobuyasu, Tone, Mari, Ito, Akihiro, Nakamura, Yoshihiko, Hoshino, Kota, Maruyama, Junichi, Ishikura, Hiroyasu, Takata, Tohru, Odani, Toshio, Amishima, Masaru, Hattori, Takeshi, Shichinohe, Yasuo, Kagaya, Takashi, Kita, Toshiyuki, Ohta, Kazuhide, Sakagami, Satoru, Koshida, Kiyoshi, Hayashi, Kentaro, Shimizu, Tetsuo, Kozu, Yutaka, Hiranuma, Hisato, Gon, Yasuhiro, Izumi, Namiki, Nagata, Kaoru, Ueda, Ken, Taki, Reiko, Hanada, Satoko, Kawamura, Kodai, Ichikado, Kazuya, Nishiyama, Kenta, Muranaka, Hiroyuki, Nakamura, Kazunori, Hashimoto, Naozumi, Wakahara, Keiko, Koji, Sakamoto, Omote, Norihito, Ando, Akira, Kodama, Nobuhiro, Kaneyama, Yasunari, Maeda, Shunsuke, Kuraki, Takashige, Matsumoto, Takemasa, Yokote, Koutaro, Nakada, Taka-Aki, Abe, Ryuzo, Oshima, Taku, Shimada, Tadanaga, Harada, Masahiro, Takahashi, Takeshi, Ono, Hiroshi, Sakurai, Toshihiro, Shibusawa, Takayuki, Kimizuka, Yoshifumi, Kawana, Akihiko, Sano, Tomoya, Watanabe, Chie, Suematsu, Ryohei, Sageshima, Hisako, Yoshifuji, Ayumi, Ito, Kazuto, Takahashi, Saeko, Ishioka, Kota, Nakamura, Morio, Masuda, Makoto, Wakabayashi, Aya, Watanabe, Hiroki, Ueda, Suguru, Nishikawa, Masanori, Chihara, Yusuke, Takeuchi, Mayumi, Onoi, Keisuke, Shinozuka, Jun, Sueyoshi, Atsushi, Nagasaki, Yoji, Okamoto, Masaki, Ishihara, Sayoko, Shimo, Masatoshi, Tokunaga, Yoshihisa, Kusaka, Yu, Ohba, Takehiko, Isogai, Susumu, Ogawa, Aki, Inoue, Takuya, Fukuyama, Satoru, Eriguchi, Yoshihiro, Yonekawa, Akiko, Kan-o, Keiko, Matsumoto, Koichiro, Kanaoka, Kensuke, Ihara, Shoichi, Komuta, Kiyoshi, Inoue, Yoshiaki, Chiba, Shigeru, Yamagata, Kunihiro, Hiramatsu, Yuji, Kai, Hirayasu, Asano, Koichiro, Oguma, Tsuyoshi, Ito, Yoko, Hashimoto, Satoru, Yamasaki, Masaki, Kasamatsu, Yu, Komase, Yuko, Hida, Naoya, Tsuburai, Takahiro, Oyama, Baku, Takada, Minoru, Kanda, Hidenori, Kitagawa, Yuichiro, Fukuta, Tetsuya, Miyake, Takahito, Yoshida, Shozo, Ogura, Shinji, Abe, Shinji, Kono, Yuta, Togashi, Yuki, Takoi, Hiroyuki, Kikuchi, Ryota, Ogawa, Shinichi, Ogata, Tomouki, Ishihara, Shoichiro, Kanehiro, Arihiko, Ozaki, Shinji, Fuchimoto, Yasuko, Wada, Sae, Fujimoto, Nobukazu, Nishiyama, Kei, Terashima, Mariko, Beppu, Satoru, Yoshida, Kosuke, Narumoto, Osamu, Nagai, Hideaki, Ooshima, Nobuharu, Motegi, Mitsuru, Umeda, Akira, Miyagawa, Kazuya, Shimada, Hisato, Endo, Mayu, Ohira, Yoshiyuki, Watanabe, Masafumi, Inoue, Sumito, Igarashi, Akira, Sato, Masamichi, Sagara, Hironori, Tanaka, Akihiko, Ohta, Shin, Kimura, Tomoyuki, Shibata, Yoko, Tanino, Yoshinori, Nikaido, Takefumi, Minemura, Hiroyuki, Sato, Yuki, Yamada, Yuichiro, Hashino, Takuya, Shinoki, Masato, Iwagoe, Hajime, Takahashi, Hiroshi, Fujii, Kazuhiko, Kishi, Hiroto, Kanai, Masayuki, Imamura, Tomonori, Yamashita, Tatsuya, Yatomi, Masakiyo, Maeno, Toshitaka, Hayashi, Shinichi, Takahashi, Mai, Kuramochi, Mizuki, Kamimaki, Isamu, Tominaga, Yoshiteru, Ishii, Tomoo, Utsugi, Mitsuyoshi, Ono, Akihiro, Tanaka, Toru, Kashiwada, Takeru, Fujita, Kazue, Saito, Yoshinobu, Seike, Masahiro, Watanabe, Hiroko, Matsuse, Hiroto, Kodaka, Norio, Nakano, Chihiro, Oshio, Takeshi, Hirouchi, Takatomo, Makino, Shohei, Egi, Moritoki, Matsuda, Koichi, Yamanashi, Yuji, Furukawa, Yoichi, Morisaki, Takayuki, Murakami, Yoshinori, Kamatani, Yoichiro, Muto, Kaori, Nagai, Akiko, Obara, Wataru, Yamaji, Ken, Asai, Satoshi, Takahashi, Yasuo, Suzuki, Takao, Sinozaki, Nobuaki, Yamaguchi, Hiroki, Minami, Shiro, Murayama, Shigeo, Yoshimori, Kozo, Nagayama, Satoshi, Obata, Daisuke, Higashiyama, Masahiko, Masumoto, Akihide, Koretsune, Yukihiro, Omae, Yosuke, Nannya, Yasuhito, Ueno, Takafumi, Katayama, Kazuhiko, Ai, Masumi, Fukui, Yoshinori, Kumanogoh, Atsushi, Sato, Toshiro, Hasegawa, Naoki, Tokunaga, Katsushi, Ishii, Makoto, Koike, Ryuji, Kitagawa, Yuko, Kimura, Akinori, Imoto, Seiya, Miyano, Satoru, Ogawa, Seishi, Kanai, Takanori, Fukunaga, Koichi, and Okada, Yukinori
- Subjects
Genome-wide association studies ,Japan ,Genetics research ,Weight Loss ,Immunogenetics ,Animals ,Guanine Nucleotide Exchange Factors ,Humans ,Genetic Predisposition to Disease ,RNA-Seq ,Lung ,Alleles ,Multidisciplinary ,Host Microbial Interactions ,Mesocricetus ,SARS-CoV-2 ,Macrophages ,GTPase-Activating Proteins ,COVID-19 ,Pneumonia ,Middle Aged ,Viral Load ,Disease Models, Animal ,Viral infection ,Interferon Type I ,Pyrazoles ,Genome-Wide Association Study - Abstract
Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target., 「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.
- Published
- 2021
3. Literature Review of Factors Affecting Family Nursing Practice
- Author
-
Hori, Motoko, Kikuchi, Ryota, and Yamazaki, Akemi
- Subjects
家族看護 ,training ,文献検討 ,literature review ,family nursing ,研修 ,nursing practice ,看護実践 - Abstract
総説, Review Article, 【目的】本研究の目的は家族看護実践に関する国内外の文献を検討し、家族看護実践に影響を与える要因および今後の研究課題を明らかにすることである。【方法】文献検索は医中誌WebとCINAHL Plusを用いて行い、研究趣旨と一致する文献各15件、計30件を検討対象とした。【結果】研修に関する文献13件、実践に関する文献6件、教育や実践の現状に関する文献7件、看護職の属性と家族看護実践の関連に関する文献4件が抽出された。家族看護実践の関連要因として、家族看護学学習経験、臨床経験年数、職位、自身の家族観、家族介護経験等が報告されていた。【考察/結論】知識や技術を身につけることにより、家族看護実践力が向上することは多くの研究で報告されているが、看護職個人の家庭や職場における経験によって培われた内面性と家族看護実践の関連についての研究は少ない。看護職が自らを振り返り、自分自身の家族観や価値観を把握することが積極的な家族看護実践への糸口になることが示唆された。
- Published
- 2019
4. From Hospital to Home : Improvements in Interdisciplinary Health Care Networks for Family Support
- Author
-
Kimura, Chisato, Yamazaki, Akemi, Buyo, Momoko, Mine, Hiroko, Tsumura, Akemi, and Kikuchi, Ryota
- Subjects
multi-disciplinary ,continuing education in nursing ,different hospitals and community care facilities ,家族支援 ,多職種 ,協働 ,継続教育 ,多施設 ,family support ,collaboration - Abstract
原著, Original Articles, 医療施設と地域の保健医療専門職による多職種・多施設の専門職が家族支援において協働で研鑽する場に必要な要素を抽出するため、保健医療専門職15名を対象として半構成的インタビューを実施し、内容分析により検討した。その結果、必要な要素として、(1)現代の家族の特性や問題の共有、(2)家族支援に必要な視点と技法、(3)家族支援を意識した現任教育、(4)視点の違いや多様性を知ること、(5)協働・連携への関心と理解が挙げられた。結果は、疾患の軽快・回復に向けて病院から自宅への生活の場の垣根のない意向を生み出すことに専心する専門職の連携と、その際に求められる重要な視点を示唆している。これらの結果は、日常の実践における家族支援、家族支援に関する施設内集合研修、多職種・多施設の専門職が、家族支援において協働で研鑽するための基礎資料として活用できるだろう。, This is an exploratory qualitative study of the experiences of 15 health care professionals from different hospitals and community care facilities providing an interdisciplinary collaborative family nursing care network. The aim is to identify the necessities involved in planning and implementing case conferences in such a care network by semi-structured interview. We identified 5 common threads in the interviews; (1) a shared understanding of the diversity and complex dynamics of the modern Japanese family unit, (2) the perspective and skill set necessary for family support, (3) conscientiousness during family support and on the job training, (4) the interest in and understanding of the collaborative process and (5) the importance of embracing diversity and conflicting points of view ’ when providing support for difficult or high risk families. The results suggest necessity of network of professionals committed to creating seamless transition from hospitalization to recovery at home for the healing process. We believe these results will be helpful in improving the educational programs such as family support in daily practices, family support group training in a variety of hospitals and community facilities, and opportunities to learn family support with multi-disciplinary professionals in the near future.
- Published
- 2019
5. Nowcasting algorithm for wind fields using ensemble forecasting and aircraft flight data
- Author
-
Kikuchi, Ryota, Misaka, Takashi, Obayashi, Shigeru, Inokuchi, Hamaki, Oikawa, Hiroshi, and Misumi, Akeo
- Subjects
real-time prediction ,TIGGE ,aircraft flight data ,data assimilation - Abstract
形態: カラー図版あり, Physical characteristics: Original contains color illustrations, Accepted: 2017-08-10, 資料番号: PA1820048000
- Published
- 2017
6. 思春期臓器移植患者における移植に関する自己開示の満足度が、health-related quality of lifeと服薬アドヒアンランスに及ぼす影響に関する縦断研究
- Author
-
Kikuchi, Ryota
- Abstract
学位の種別: 論文博士, 審査委員会委員 : (主査)東京大学教授 真田 弘美, 東京大学教授 小山 博史, 東京大学准教授 藤代 準, 東京大学准教授 武村 雪絵, 東京大学講師 犬塚 亮
- Published
- 2019
7. 縮約モデルとデータ同化によるリアルタイム非定常流予測技術
- Author
-
Kikuchi, Ryota, Misaka, Takashi, and Obayashi, Shigeru
- Abstract
第8回EFD/CFD融合ワークショップ (2016年2月9日. 秋葉原コンベンションホール), 千代田区, 東京, The 8th Workshop on Integration of EFD and CFD (Feburary 9, 2016. AKIHABARA Convention Hall), Chiyoda-ku, Tokyo, Japan, 非定常流体の解析は,工学・理学分野に問わず広い分野において必要不可欠なものになっているが、計算コストが高いため、現象のリアルタイムな予測モデルは現状の計算資源では現実的なツールに至っていない。計算コストを削減する手法として、流体計算の結果から流れの近似モデルを構成する縮約モデルが注目を集めているが、非定常流の縮約モデルでは解析が不安定になることや、時間積分を進めると計算精度が著しく低下する問題が報告されている。そこで、現実の情報である計測値を縮約モデルへデータ同化することにより、計算の不安定や計算精度の劣化を防ぐことができる。本発表では、縮約モデルの実装方法およびデータ同化による計測値との融合方法について述べるとともに、これまで発表者が行ってきた流体力学・航空分野への適用事例を紹介する。, 形態: カラー図版あり, Physical characteristics: Original contains color illustrations, 資料番号: AA1630023003, レポート番号: JAXA-SP-16-002
- Published
- 2016
8. Urban Structure for Sustainable Public Transport on Network-type Compact City (in Japanese)
- Author
-
Kikuchi, Ryota and Muromachi, Yasunori
- Published
- 2016
9. Urban and Natural Landuse Changes in the Cities with Population Decrease by National Land Numerical Information (in Japanese)
- Author
-
Kikuchi, Ryota and Muromachi, Yasunori
- Published
- 2015
10. 低層風擾乱のデータ同化シミュレーションに関する研究
- Author
-
Kikuchi, Ryota, Misaka, Takashi, and Obayashi, Shigeru
- Abstract
形態: カラー図版あり, Physical characteristics: Original contains color illustrations, 資料番号: AA0062292001, レポート番号: JAXA-SP-13-015
- Published
- 2014
11. Real-Time Data Assimilation Using Particle Filter and Reduced Order Model
- Author
-
Kikuchi, Ryota, Misaka, Takashi, and Obayashi, Shigeru
- Abstract
第45回流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム2013 (2013年7月4日-5日. タワーホール船堀), 東京, 45th Fluid Dynamics Conference / Aerospace Numerical Simulation Symposium 2013 (July 4-5, 2013. Tower Hall Funabori), Tokyo, Japan, In this research, aiming at real-time data assimilation, a reduced order model (ROM) and a particle filter (PF) are applied to predict the Karman vortex around a circular cylinder. The ROM is an efficient tool to calculate a flow field in real-time because the ROM consumes extremely less computational time than the original numerical model. The PF is employed to estimate coefficients of the ROM by using observed velocity components in the wake of the circular cylinder. Comparing the result of the ROM and that of the numerical analysis by Building Cube Methods (BCM), the phase difference of the Karman vortex between the ROM and the observations was corrected. The proposed method could estimate the flow field accurately in real-time even though the observation contained artificial measurement errors., 形態: カラー図版あり, Physical characteristics: Original contains color illustrations, 資料番号: AA0062268015, レポート番号: JAXA-SP-13-011
- Published
- 2014
12. Clinical Characteristics Of The Overlap Syndrome Of Asthma And COPD In Older Adults
- Author
-
Ishii Masanobu, Etsuko Tagaya, Kikuchi Ryota, Akaba Tomohiro, Jun Tamaoki, Yuri Shimizu, Kiyoshi Takeyama, Saori Kirishi, and Mitsuko Kondo
- Subjects
medicine.medical_specialty ,COPD ,Lung ,business.industry ,medicine.drug_class ,Overlap syndrome ,Tiotropium bromide ,respiratory system ,medicine.disease ,respiratory tract diseases ,Pulmonary function testing ,medicine.anatomical_structure ,DLCO ,Internal medicine ,Anticholinergic ,Cardiology ,Physical therapy ,Medicine ,business ,medicine.drug ,Asthma - Abstract
BACKGROUND: There is little information about the overlapping diagnoses of asthma and COPD (overlap syndrome) in older people with asthma. Some of the refractory asthma in elderly could be associated with complication with COPD. We therefor examined the clinical features and treatment of patients with overlap syndrome in elderly. METHODS: In 52 outpatients with physician-diagnosed asthma aged 75 years and older, we performed chest high-resolution CT and assessed the presence of pulmonary emphysema (low attenuation area) according to the method of Bergin. For pulmonary function test, pre- and post-bronchodilator FEV 1 , peak expiratory flow (PEF), and carbon monoxide diffusing capacity of the lung (DLCO) were measured. In addition, the efficacy of adding tiotropium bromide to the treatment was examined. RESULTS: Of 52 patients, 29 had emphysema, where the frequency was higher in men than women (71% vs. 28%). Values for FEV 1 were not different between patients with and without COPD, but COPD (+) patients with moderate and severe asthma had significantly lower DLCO and reversibility of FEV 1 compared with COPD (–) patients. The duration of asthma was not related to FEV 1 or PEF, but inversely correlated with post-bronchodilator FEV 1 (p = 0.029) and with reversibility of FEV 1 (p = 0.037). Treatment with tiotropium for 8 weeks increased FEV 1 by 136 ± 29 ml. CONCLUSIONS: In our patient group, aging and asthma duration results in “fixed” or irreversible airflow obstruction, and addition of anticholinergic agent to the treatment should be considered.
- Published
- 2011
13. コーホート変化率法による3次メッシュ人口推計とその精度検証
- Author
-
Kikuchi, Ryota and Muromachi, Yasunori
- Published
- 2015
14. Real-Time Prediction of Wind Conditions and Atmospheric Turbulence for Safe and Efficient Aircraft Operation
- Author
-
Kikuchi, Ryota and 大林茂
- Abstract
要約のみ, 課程
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.