1. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice : An Ex Vivo and In Vivo Investigation
- Author
-
Tejedor, Sandra, Wågberg, Maria, Correia, Cláudia, Åvall, Karin, Hölttä, Mikko, Hultin, Leif, Lerche, Michael, Davies, Nigel, Bergenhem, Nils, Snijder, Arjan, Marlow, Tom, Dönnes, Pierre, Fritsche-Danielson, Regina, Synnergren, Jane, Jennbacken, Karin, Hansson, Kenny, Tejedor, Sandra, Wågberg, Maria, Correia, Cláudia, Åvall, Karin, Hölttä, Mikko, Hultin, Leif, Lerche, Michael, Davies, Nigel, Bergenhem, Nils, Snijder, Arjan, Marlow, Tom, Dönnes, Pierre, Fritsche-Danielson, Regina, Synnergren, Jane, Jennbacken, Karin, and Hansson, Kenny
- Abstract
Background: Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). Methods: An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. Results: The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. Conclusion: f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU., CC BY 4.0 DEED© 2024 by the authors.Correspondence Address: S. Tejedor; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 50, Sweden; email: sandra.tejedorgascon1@astrazeneca.com; K. Hansson; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 50, Sweden; email: kenny.m.hansson@astrazeneca.comThis research was partially funded by grants from the Swedish Knowledge Foundation, grant number 20200014.
- Published
- 2024
- Full Text
- View/download PDF