46 results on '"Millard, F."'
Search Results
2. Spaceflight Standard Measures
- Author
-
Clement, Gilles R, Mullenax, Carol A, Wood, Scott J, Zwart, Sara R, Crucian, Brian E, Lee, Stuart, Ott, Charlie M, Reschke, Millard F, Roma, Peter G, Smith, Scott M, and Stenger, Michael B
- Subjects
Astronautics (General) - Published
- 2020
3. Neurovestibular Symptoms in Astronauts Immediately after Space Shuttle and International Space Station Missions
- Author
-
Millard F. Reschke, Edward F. Good, and Gilles R. Clément
- Published
- 2017
- Full Text
- View/download PDF
4. Autogenic-Feedback Training Exercise (AFTE) Mitigates the Effects of Spatial Disorientation to Simulated Orion Spacecraft Re-Entry: Individual Differences
- Author
-
Cowings, Patricia S, Toscano, William B, Reschke, Millard F, Gebreyesus, Fiyori, and Rocha, Christopher
- Subjects
Aerospace Medicine - Abstract
NASA has identified a potential risk of spatial disorientation to future astronauts during re-entry of the proposed Orion spacecraft. The purpose of this study was to determine if a 6-hour physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these effects. Twenty subjects were assigned to two groups (AFTE and Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures to a simulated Orion re-entry test in the rotating chair. Treatment subjects were given two hours of AFTE training before each Orion test. A diagnostic scale was used to evaluate motion sickness symptom severity. Results showed that 2 hours of AFTE significantly reduced motion sickness symptoms during the second Orion test. AFTE subjects were able to maintain lower heart rates and skin conductance levels and other responses than the control group subjects during subsequent tests. Trends show that performance was less degraded for AFTE subjects. The results of this study indicate that astronauts could benefit from receiving at least 2 hours of preflight AFTE. In addition, flight crews could benefit further by practicing physiologic self-regulation using mobile devices.
- Published
- 2017
5. Update of the Joint NASA Russian Field Test
- Author
-
Reschke, Millard F, Kozlovskaya, Inessa B, Kofman, I. S, Tomilovskaya, E. S, Cerisano, J. M, Stenger, M. B, Laurie, S, Rukavishnikov, I. V, Fomina, E. V, Lee, S. M. C, Wood, S. J, Mulavara, A. P, Feiveson, A. H, Fisher, E. A, Rosenberg, M. J, Kitov, V, Lysova, N, and Bloomberg, J. J
- Subjects
Aerospace Medicine - Published
- 2017
6. Results from a Joint NASA and Russian Field Test of Sensorimotor and Cardiovascular Function Following Long Duration Spaceflight
- Author
-
Reschke, Millard F, Kozlovskaya, Inessa B, Kofman, I. S, Tomilovskaya, E. S, Cerisano, J. M, Stenger, M. B, Laurie, S, Rukavishnikov, I. V, Fomina, E. V, Lee, S. M. C, Wood, S. J, Mulavara, A. P, Feiveson, A. H, Fisher, E. A, Rosenberg, M. J, Kitov, V, Lysova, N, and Bloomberg, J. J
- Subjects
Aerospace Medicine - Published
- 2016
7. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight
- Author
-
Bloomberg, Jacob J, Reschke, Millard F, Clement, Gilles R, Mulavara, Ajitkumar P, and Taylor, Laura C
- Subjects
Behavioral Sciences ,Space Transportation And Safety - Abstract
Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional impacts is limited to studies performed in the space flight environment. Fortunately, many sensorimotor and vestibular experiments have been performed during and/or after space flight missions since 1959 (Reschke et al. 2007). While not all of these experiments were directly relevant to the question of vehicle/complex system control, most provide insight into changes in aspects of sensorimotor control that might bear on the physiological subsystems underlying this high-level integrated function.
- Published
- 2015
8. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance
- Author
-
Bloomberg, Jacob J, Batson, Crystal D, Buxton, Roxanne E, Feiveson, Al H, Kofman, Igor S, Lee, Stuart M. C, Miller, Chris A, Mulavara, Ajitkumar P, Peters, Brian T, Phillips, Tiffany, Platts, Steven H, Ploutz-Snyder, Lori L, Reschke, Millard F, Ryder, Jeff W, Stenger, Michael B, and Taylor, Laura C
- Subjects
Life Sciences (General) ,Aerospace Medicine - Abstract
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. ISS crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after reambulation.
- Published
- 2014
9. Postural Responses Following Space Flight and Ground Based Analogs
- Author
-
Kofman, Igor S, Reschke, Millard F, Cerisano, Jody M, Fisher, Elizabeth A, Tomilovskaya, Elena V, Kozlovskaya, Inessa B, and Bloomberg, Jacob B
- Subjects
Aerospace Medicine - Abstract
With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous changes between HDBR and space flight. Primary differences across short duration, long duration space flight and HDBR are related to the length of exposure associated with both space flight and HDBR.
- Published
- 2013
10. Impact of Virtual Environments on Sensorimotor Coordination and User Safety
- Author
-
Harm, Deborah L, Taylor, Laura C, Kennedy, Robert S, and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
One critical unresolved issue related to the safe use of virtual environments (VEs) is maladaptive sensorimotor coordination following exposure to VEs. Moving visual displays used in VEs, especially in the absence of concordant vestibular signals leads to adaptive responses during VE exposure, but maladaptive responses following return to the normal environment. In the current set of investigations, we examined the effect of HMD and dome VE displays on eye-head-hand coordination, gaze holding and postural equilibrium. Subjects (61) performed a navigation and a pick and place task. Further, we compared 30 min and 60 min exposures across 3 days (each separated by 1 day). A subset of these results will be presented. In general, we found significant decrements in all three measures following exposure to the VEs. In addition, we found that these disturbances generally recovered within 1-2 hrs and decreased across days. These findings suggest the need for post-VE monitoring of sensorimotor coordination and for developing a set of recommendations for users concerning activities that are safe to engage in following use of a VE.
- Published
- 2011
11. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
- Author
-
Reschke, Millard F, Bloomberg, J. J, Wood, S. J, and Harm, D. L
- Subjects
Behavioral Sciences - Abstract
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
- Published
- 2011
12. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments
- Author
-
Taylor, Laura C, Harm, Deborah L, Kennedy, Robert S, Reschke, Millard F, and Loftin, R. Bowen
- Subjects
Aerospace Medicine - Abstract
Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.
- Published
- 2011
13. Functional Task Test (FTT)
- Author
-
Bloomberg, Jacob J, Mulavara, Ajitkumar, Peters, Brian T, Rescheke, Millard F, Wood, Scott, Lawrence, Emily, Koffman, Igor, Ploutz-Snyder, Lori, Spiering, Barry A, Feeback, Daniel L, Platts, Steven H, Stenger, Michael B, Lee, Stuart M.C, Arzeno, Natalia, Feiveson, Alan H, Ryder, Jeffrey, Garcia, Yamil, and Guilliams, Mark E
- Subjects
Aerospace Medicine - Abstract
This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.
- Published
- 2009
14. Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions
- Author
-
Reschke, Millard F, Kornilova, Ludmila, Tomilovskaya, Elena, Parker, Donald E, Leigh, R. John, and Kozlovskaya, Inessa
- Subjects
Life Sciences (General) - Abstract
Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.
- Published
- 2009
15. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects
- Author
-
Taylor, Laura C, Harm, Deborah L, Kozlovskaya, Inessa, Reschke, Millard F, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.
- Published
- 2009
16. Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects
- Author
-
Reschke, Millard F, Somers, Jeffery T, Krnavek, Jody, Fisher, Elizibeth, Ford, George, and Paloski, William H
- Subjects
Aerospace Medicine - Abstract
It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are typical of bed rested subjects. There also appears to be a trend in the treatment group where centrifugation results in peak latencies that are shorter than the control group. This trend is supported by the observation that peak reflex amplitudes are larger (up to 40% in magnitude)than those of the control subjects. Furthermore, centrifugation tends, by day 21 of bed rest, to normalize the peak amplitudes to the amplitudes observed prior to bed rest or centrifugation. From a preliminary point of view, centrifugation appears to have a positive effect on the sensorimotor system, and specifically on those muscles that provide anti-gravity and postural support.
- Published
- 2007
17. Vestibulo-Cervico-Ocular Responses and Tracking Eye Movements after Prolonged Exposure to Microgravity
- Author
-
Kornilova, L. N, Naumov, I. A, Azarov, K. A, Sagalovitch, S. V, Reschke, Millard F, and Kozlovskaya, I. B
- Subjects
Aerospace Medicine - Abstract
The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).
- Published
- 2007
18. Stroboscopic Vision as a Treatment for Space Motion Sickness
- Author
-
Reschke, Millard F, Somers, Jeffrey T, Ford, George, and Krnavek, Jody M
- Subjects
Aerospace Medicine - Abstract
Results obtained from space flight indicate that most space crews will experience some symptoms of motion sickness causing significant impact on the operational objectives that must be accomplished to assure mission success. Based on the initial work of Melvill Jones we have evaluated stroboscopic vision as a method of preventing motion sickness. Given that the data presented by professor Melvill Jones were primarily post hoc results following a study not designed to investigate motion sickness, it is unclear how motion sickness results were actually determined. Building on these original results, we undertook a three part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness using: (1) visual field reversal, (2) Reading while riding in a car (with or without external vision present), and (3) making large pitch head movements during parabolic flight.
- Published
- 2007
19. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
- Author
-
O'Sullivan, Brita M, Harm, Deborah L, Reschke, Millard F, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
- Published
- 2006
20. Stroboscopic Vision as a Treatment for Space Motion Sickness
- Author
-
Reschke, Millard F, Somers, J.T, Ford, G, Krnavek, J.M, and Hwang, E.Y
- Subjects
Aerospace Medicine - Abstract
Stroboscopic illumination reduces the severity of motion sickness symptoms, and shutter glasses with a flash frequency of 4 Hz are as effective as a strobe light. Stroboscopic illumination appears to be an effective countermeasure where retinal slip is a significant factor in eliciting motion sickness. Additional research is currently underway to evaluate the stroboscopic glasses efficacy in a variety of different motion environments. Specifically, carsickness, sickness during the microgravity periods of parabolic flight and sea sickness. Possible mechanisms underlying the effectiveness of the glasses are also being investigated. There is evidence from pilot studies showing that the glasses, when strobed at the 4 Hz frequency, reduce saccade velocity to visually presented targets is reduced by approximately half of the normal values. It is interesting to note that adaptation to space flight may also slow saccade velocity.
- Published
- 2006
21. Stroboscopic Vision as a Treatment Motion Sickness
- Author
-
Reschke, Millard F, Somers, J. T, Ford, G, Krnavek, J. M, Hwang, E. y, Kornilova, L. N, and Leigh, R. J
- Subjects
Aerospace Medicine - Abstract
Results obtained from space flight indicate that most space crews will experience some symptoms of motion sickness causing significant impact on the operational objectives that must be accomplished to assure mission success. Based on the initial work of Melvill-Jones, we have evaluated stroboscopic vision as a method of preventing motion sickness. Methods: Nineteen subjects read text while making +/-20deg head movements in the horizontal plane at 0.2 Hz while wearing left-right reversing prisms during exposure to 4 Hz stroboscopic or normal room illumination. Testing was repeated using LCD shutter glasses as the stroboscopic source with an additional 19 subjects. Results: With Strobe, motion sickness was significantly lower than with normal room illumination. Results with the LCD shutter glasses were analogous to those observed with environmental strobe. Conclusions: Stroboscopic illumination appears to be effective where retinal slip is a factor in eliciting motion sickness. Additional research is evaluating the glasses efficacy for, carsickness, sickness in parabolic flight and seasickness. There is evidence from pilot studies showing that the glasses reduce saccade velocity to visually presented targets by approximately half of the normal values. It is interesting to note that adaptation to space flight may also slow saccade velocity.
- Published
- 2006
22. Studies of the Ability to Hold the Eye in Eccentric Gaze: Measurements in Normal Subjects with the Head Erect
- Author
-
Reschke, Millard F, Somers, Jeffrey T, Feiveson, Alan H, Leigh, R. John, Wood, Scott J, Paloski, William H, and Kornilova, Ludmila
- Subjects
Life Sciences (General) - Abstract
We studied the ability to hold the eyes in eccentric horizontal or vertical gaze angles in 68 normal humans, age range 19-56. Subjects attempted to sustain visual fixation of a briefly flashed target located 30 in the horizontal plane and 15 in the vertical plane in a dark environment. Conventionally, the ability to hold eccentric gaze is estimated by fitting centripetal eye drifts by exponential curves and calculating the time constant (t(sub c)) of these slow phases of gazeevoked nystagmus. Although the distribution of time-constant measurements (t(sub c)) in our normal subjects was extremely skewed due to occasional test runs that exhibited near-perfect stability (large t(sub c) values), we found that log10(tc) was approximately normally distributed within classes of target direction. Therefore, statistical estimation and inference on the effect of target direction was performed on values of z identical with log10t(sub c). Subjects showed considerable variation in their eyedrift performance over repeated trials; nonetheless, statistically significant differences emerged: values of tc were significantly higher for gaze elicited to targets in the horizontal plane than for the vertical plane (P less than 10(exp -5), suggesting eccentric gazeholding is more stable in the horizontal than in the vertical plane. Furthermore, centrifugal eye drifts were observed in 13.3, 16.0 and 55.6% of cases for horizontal, upgaze and downgaze tests, respectively. Fifth percentile values of the time constant were estimated to be 10.2 sec, 3.3 sec and 3.8 sec for horizontal, upward and downward gaze, respectively. The difference between horizontal and vertical gazeholding may be ascribed to separate components of the velocity position neural integrator for eye movements, and to differences in orbital mechanics. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied in a clinical setting to patients who were exposed to environments that may have modified their central integrators and thus require monitoring. Patients with gaze-evoked nystagmus can be flagged by comparing to the above established normative criteria.
- Published
- 2006
23. Tilt and Translation Motion Perception during Off Vertical Axis Rotation
- Author
-
Wood, Scott J, Reschke, Millard F, and Clement, Gilles
- Subjects
Aerospace Medicine - Abstract
The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception.
- Published
- 2006
24. Motion Sickness Treatment Apparatus and Method
- Author
-
Reschke, Millard F, Somers, Jeffrey T, and Ford, George A
- Subjects
Optics - Abstract
Methods and apparatus are disclosed for treating motion sickness. In a preferred embodiment a method of the invention comprises operating eyewear having shutter lenses to open said shutter lenses at a selected operating frequency ranging from within about 3 Hz to about 50 Hz. The shutter lenses are opened for a short duration at the selected operating frequency wherein the duration is selected to prevent retinal slip. The shutter lenses may be operated at a relatively slow frequency of about 4 Hz when the user is in passive activity such as riding in a boat or car or in limited motion situations in a spacecraft. The shutter lenses may be operated at faster frequencies related to motion of the user's head when the user is active.
- Published
- 2005
25. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets
- Author
-
Han, Yanning H, Kumar, Arun N, Reschke, Millard F, Somers, Jeffrey T, Dell'Osso, Louis F, and Leigh, R. John
- Subjects
Life Sciences (General) - Abstract
We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as th ey monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target,median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but decl ined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (r ange 0.68 - 1.67). During viewing of the head-fixed near target, median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjec ts, but increased at higher frequencies, so that at 2.8 Hz median gai n was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses (vestibulo-ocular reflex gain, Gvor) by applyin g transient head perturbations (peak acceleration> 1,000 deg's(exp 2) ) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated < 70m after the onset of head perturbation, was 0.98 (range 0.39 - 1.42) while viewing the earth-fixed near target, and 0. 97 (range 0.37 - 1.33) while viewing the head-fixed near target. For the group of subjects, 9 out of 10 subjects showed no sigificant diff erence of Gvor between the two viewing conditions ( p > 0.053 ) at all test frequencies. Since Gvor accounted for only approximately 73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination , to eliminate retinal image slip information, the gain of compensato ry eye movements declined compared with viewing in ambient room light . During sum-of-sine head rotations, while viewing the earth-fixed target, to minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple superposition of smooth-pursuit tracking of sinusoidal target motion could not fully account for the overall r esponse at higher frequencies, suggesting other non-vestibular contributions. During binocular viewing conditions when vergence angle was s ignificantly greater than monocular viewing (p < 0.001), this gain of compensatory eye movements did not show proportional change; indeed, gain could not be correlated with vergence angle during monocular or binocular viewing. We conclude that several separate factors contribute to generate eye rotations during sinusoidal yaw head rotations whi le viewing a near target; these include the VOR, visual-tracking eye movements that utilize retinal image motion, predictive eye movements and, possibly, other unidentified nonvestibular factors. For these experiments, vergence was not an important determinant of response gain .
- Published
- 2004
26. Destabilization of Human Balance Control by Static and Dynamic Head Tilts
- Author
-
Paloski, William H, Wood, Scott J, Feiveson, Alan H, Black, F. Owen, Hwang, Emma Y, and Reschke, Millard F
- Subjects
Behavioral Sciences - Abstract
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
- Published
- 2004
27. Effects of space flight on locomotor control
- Author
-
Bloomberg, Jacob J, Layne, Charles S, McDonald, P. Vernon, Peters, Brian T, Huebner, William P, Reschke, Millard F, Berthoz, Alain, Glasauer, Stefan, Newman, Dava, and Jackson, D. Keoki
- Subjects
Life Sciences (General) - Abstract
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
- Published
- 1999
28. Neuroscience Investigations: An Overview of Studies Conducted
- Author
-
Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of sensorimotor adaptation to spaceflight is limited, and the future application of effective countermeasures depends, in large part, on the results from appropriate neuroscience investigations. Therefore, the objective of the neuroscience investigations could have a negative effect on mission success. The Neuroscience Laboratory, Johnson Space Center (JSC), implemented three integrated Detailed Supplementary Objectives (DSO) designed to investigate spatial orientation and the associated compensatory responses as a part of the EDOMP. The four primary goals were (1) to establish a normative database of vestibular and associated sensory changes in response to spaceflight, (2) to determine the underlying etiology of neurovestibular and sensory motor changes associated with exposure to microgravity and the subsequent return to Earth, (3) to provide immediate feedback to spaceflight crews regarding potential countermeasures that could improve performance and safety during and after flight, and (4) to take under consideration appropriate designs for preflight, in-flight, and postflight countermeasures that could be implemented for future flights.
- Published
- 1999
29. Recovery of postural equilibrium control following space flight
- Author
-
Paloski, William H, Reschke, Millard F, Black, F. Owen, and Dow, R. S
- Subjects
Aerospace Medicine - Abstract
DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of normal (preflight) balance control, (3) differentiate between rookie and veteran subjects, and (4) provide normative and clinical databases for comparison, and because our study successfully characterized postflight balance control recovery in a large cross-section of Shuttle crew members, we recommend that this system and protocol be adopted as a standard dependent measure for evaluating the efficacy of countermeasures and/or evaluating the postflight effects of changing mission durations or activities.
- Published
- 1999
30. Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems
- Author
-
Cholewiak, Roger W and Reschke, Millard F
- Subjects
Behavioral Sciences - Abstract
When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.
- Published
- 1997
31. A Model-Based Approach for the Measurement of Eye Movements Using Image Processing
- Author
-
Sung, Kwangjae and Reschke, Millard F
- Subjects
Life Sciences (General) - Abstract
This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy eyelids and light reflections while maintaining the measurement resolution available by the centroid algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can be combined with iris-tracking techniques to measure ocular torsion. A comparison search method of pupil candidates using pixel coordinate reference lookup tables optimizes the processing requirements for a least square fit of the circular disk model. This paper includes quantitative analyses and simulation results for the resolution and the robustness of the algorithm. The algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye measurement system which can be used for clinical and research applications requiring the precise recording of eye movements in three-dimensional space.
- Published
- 1997
32. Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight
- Author
-
Clement, Gilles, Wood, Scott J, and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.
- Published
- 1996
33. Quick-Change Rotational Coupling
- Author
-
Reschke, Millard F and Bufkin, Joe
- Subjects
Mechanics - Abstract
Rotational coupling designed to enable quick connection and disconnection of driving and driven components and to transmit torque without slippage. Originally designed to provide for quick adjustment of relative positions of chair and rotary motor drive for vestibular tests of human subjects in outer space. Also suitable for use in other situations in which turntables, rotating scientific instruments, or other equipment connected and disconnected frequently for adjustment or replacement. (Not suitable for replacement of permanent rotary couplings.)
- Published
- 1995
34. Effects of microgravity on the interaction of vestibular and optokinetic nystagmus in the vertical plane
- Author
-
Clement, Gilles, Wood, Scott J, and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
The extent to which the slow phase velocity (SPV) of nystagmus elicited by a vertical optokinetic stimulation with constant velocity could be modulated by sinusoidal angular motion in the vertical plane was investigated under normal gravity condition and during the microgravity period of parabolic flight. In normal gravity, when the angular head motion and the optokinetic stimulation were in the same direction, the peak SPV was slower than the velocity of the optokinetic display. When the head motion and the optokinetic stimulation were in opposite directions, the peak SPV was equal to the velocity of the optokinetic display. In microgravity, the peak SPV was approximately equal to the velocity of the optokinetic display when head rotation and optokinetic stimulation were in the same direction, and was faster than the velocity of the optokinetic dispaly when head rotation and optokinetic stimulation were in opposite directions. In addition, the interaction of vestibular and optokinetic nystagmus was found to be nonlinear in microgravity, especially when the optokinetic stimulation was directed downward. These results suggest an interaction between the vestibular and the optokinetic systems modulated as a function of the gravitational state, and support the observation that visual input is more effective in reducing sensory conflict experienced in microgravity.
- Published
- 1992
35. Effects of gravitoinertial force variations on optokinetic nystagmus and on perception of visual stimulus orientation
- Author
-
Clement, Gilles, Reschke, Millard F, Verrett, Carol M, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
Recordings of horizontal and vertical eye movement were obtained with subjects exposed to vertical, horizontal, and oblique optokinetic stimulation during parabolic flight. When the optokinetic stimulation was vertical, the upward slow phase eye velocity increased increased during transition from high force level to free-fall, and decreased during transition from free-fall to high force level. During optokinetic stimulation in the horizontal and oblique plane, the gravitoinertial forces of parabolic flight induced changes in the velocity of the vertical component of the eye movements, and, therefore, changes in the plane of the eye movements. Some subjects also preceived modifications in the apparent orientation of the visual motion. These findings are in agreement with previous observations on the presence of a vertical nystagmus induced by changes in plane vertical acceleration. They also suggest a close interaction of reflexive eye movements induced by graviceptor inputs and visual inputs for visual stabilization during variations of gravitoinertial force level.
- Published
- 1992
36. Space flight and changes in spatial orientation
- Author
-
Reschke, Millard F, Bloomberg, Jacob J, Harm, Deborah L, and Paloski, William H
- Subjects
Aerospace Medicine - Abstract
From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.
- Published
- 1992
37. System Collects And Displays Demultiplexed Data
- Author
-
Reschke, Millard F, Fariss, Julie L, Kulecz, Walter B, and Paloski, William H
- Subjects
Electronic Systems - Abstract
Electronic system collects, manipulates, and displays in real time results of manipulation of streams of data transmitted from remote scientific instrumentation. Interface circuit shifts data-and-clock signal from differential logic levels of multiplexer to single-ended logic levels of computer. System accommodates nonstandard data-transmission protocol. Software useful in applications where Macintosh computers used in real-time display and recording of data.
- Published
- 1992
38. Microgravity vestibular investigations (10-IML-1)
- Author
-
Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
Our perception of how we are oriented in space is dependent on the interaction of virtually every sensory system. For example, to move about in our environment we integrate inputs in our brain from visual, haptic (kinesthetic, proprioceptive, and cutaneous), auditory systems, and labyrinths. In addition to this multimodal system for orientation, our expectations about the direction and speed of our chosen movement are also important. Changes in our environment and the way we interact with the new stimuli will result in a different interpretation by the nervous system of the incoming sensory information. We will adapt to the change in appropriate ways. Because our orientation system is adaptable and complex, it is often difficult to trace a response or change in behavior to any one source of information in this synergistic orientation system. However, with a carefully designed investigation, it is possible to measure signals at the appropriate level of response (both electrophysiological and perceptual) and determine the effect that stimulus rearrangement has on our sense of orientation. The environment of orbital flight represents the stimulus arrangement that is our immediate concern. The Microgravity Vestibular Investigations (MVI) represent a group of experiments designed to investigate the effects of orbital flight and a return to Earth on our orientation system.
- Published
- 1992
39. Responses of heart rate and blood pressure to KC-135 hyper-gravity
- Author
-
Satake, Hirotaka, Matsunami, Ken'ichi, and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
Many investigators have clarified the effects of hyper gravitational-inertial forces (G) upon the cardiovascular system, using the centrifugal apparatus with short rotating radius. We investigated the cardiovascular responses to KC-135 hyper-G flight with negligibly small angular velocity. Six normal, healthy subjects 29 to 40 years old (5 males and 1 female) took part in this experiment. Hyper gravitational-inertial force was generated by the KC-135 hyper-G flight, flown in a spiral path with a very long radius of 1.5 miles. Hyper-G was sustained for 3 minutes with 1.8 +Gz in each session and was repeatedly exposed to very subject sitting on a chair 5 times. The preliminary results of blood pressure and R-R interval are discussed. An exposure of 1.8 +Gz stress resulted in a remarkable increase of systolic and diastolic blood pressure, while the pulse pressure did not change and remained equal to the control level regardless of an exposure of hyper-G. These results in blood pressure indicate an increase of resistance in the peripheral vessels, when an exposure of hyper-G was applied. The R-R interval was calculated from ECG. R-R interval in all subjects was changed but not systematically, and R-R interval became obviously shorter during the hyper-G period than during the 1 +Gz control period although R-R interval varied widely in some cases. The coefficient of variation of R-R interval was estimated to determine the autonomic nerve activity, but no significant change was detectable.
- Published
- 1992
40. The effect of space flight on spatial orientation
- Author
-
Reschke, Millard F, Bloomberg, Jacob J, Harm, Deborah L, Paloski, William H, and Satake, Hirotaka
- Subjects
Aerospace Medicine - Abstract
Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.
- Published
- 1992
41. Treatment of motion sickness in parabolic flight with buccal scopolamine
- Author
-
Norfleet, William T, Degioanni, Joseph J, Reschke, Millard F, Bungo, Michael W, Kutyna, Frank A, Homick, Jerry L, and Calkins, D. S
- Subjects
Aerospace Medicine - Abstract
Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.
- Published
- 1992
42. Instrument Measures Ocular Counterrolling
- Author
-
Levitan, Barry M, Reschke, Millard F, and Spector, Lawrence N
- Subjects
Life Sciences - Abstract
Compact, battery-powered, noninvasive unit replaces several pieces of equipment and operator. Instrument that looks like pair of goggles with small extension box measures ocular counterrotation. Called "otolith tilt-translation reinterpretation" (OTTR) goggles, used in studies of space motion sickness. Also adapted to use on Earth and determine extent of impairment in patients who have impaired otolith functions.
- Published
- 1991
43. Statistical prediction of space motion sickness
- Author
-
Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
Studies designed to empirically examine the etiology of motion sickness to develop a foundation for enhancing its prediction are discussed. Topics addressed include early attempts to predict space motion sickness, multiple test data base that uses provocative and vestibular function tests, and data base subjects; reliability of provocative tests of motion sickness susceptibility; prediction of space motion sickness using linear discriminate analysis; and prediction of space motion sickness susceptibility using the logistic model.
- Published
- 1990
44. Biochemical correlates of neurosensory changes in weightlessness
- Author
-
Leach, Carolyn S and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
The possible existence of a relationship between space motion sickness and chemical and biochemical variables measured in body fluids is studied. Clinical chemistry and endocrine measurements from blood and urine samples taken before and after Space Shuttle flights were analyzed along with the occurrence of SMS during flight and provocative testing before flight. Significant positive correlations were observed with serum chloride and significant negative correlations with serum phosphate, serum uric acid, and plasma thyroid stimulating hormone.
- Published
- 1989
45. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch
- Author
-
Reschke, Millard F and Parker, Donald E
- Subjects
Aerospace Medicine - Abstract
Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.
- Published
- 1987
46. The use of the logistic model in space motion sickness prediction
- Author
-
Lin, Karl K and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 53 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.
- Published
- 1987
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.