1. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors.
- Author
-
Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C, Ma W, Guo Y, Liu Y, Duan W, Hendershot C, King AC, Zhang Y, Sousa E, Tam A, Benard S, Yang H, Kelleher K, Jin F, Piche-Nicholas N, Keating SE, Narciandi F, Lawrence-Henderson R, Arai M, Stochaj WR, Svenson K, Mosyak L, Lam K, Francis C, Marquette K, Wroblewska L, Zhu HL, Sheehan AD, LaVallie ER, D'Antona AM, Betts A, King L, Rosfjord E, Cunningham O, Lin L, Sapra P, Tchistiakova L, Mathur D, and Bloom L
- Subjects
- Animals, Antibodies, Bispecific pharmacokinetics, Antibodies, Bispecific therapeutic use, Cell Line, Tumor, Female, Humans, Hybridomas, Macaca fascicularis immunology, Macaca fascicularis metabolism, Mice, Inbred BALB C, Neoplasms immunology, Neoplasms metabolism, Protein Engineering methods, Single-Chain Antibodies immunology, Single-Chain Antibodies pharmacokinetics, Single-Chain Antibodies therapeutic use, T-Lymphocytes immunology, T-Lymphocytes metabolism, Mice, Antibodies, Bispecific immunology, CD3 Complex immunology, Immunotherapy, Adoptive methods, Neoplasms therapy, Receptors, Enterotoxin immunology
- Abstract
We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.
- Published
- 2021
- Full Text
- View/download PDF