65 results on '"F. Grussu"'
Search Results
2. Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology.
- Author
-
Fokkinga E, Hernandez-Tamames JA, Ianus A, Nilsson M, Tax CMW, Perez-Lopez R, and Grussu F
- Subjects
- Humans, Animals, Image Processing, Computer-Assisted methods, Reproducibility of Results, Image Interpretation, Computer-Assisted methods, Diffusion Magnetic Resonance Imaging methods, Neoplasms diagnostic imaging, Neoplasms pathology
- Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2., (© 2023 International Society for Magnetic Resonance in Medicine.)
- Published
- 2024
- Full Text
- View/download PDF
3. Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial.
- Author
-
Williams T, John N, Calvi A, Bianchi A, De Angelis F, Doshi A, Wright S, Shatila M, Yiannakas MC, Chowdhury F, Stutters J, Ricciardi A, Prados F, MacManus D, Grussu F, Karsa A, Samson B, Battiston M, Gandini Wheeler-Kingshott CAM, Shmueli K, Ciccarelli O, Barkhof F, and Chataway J
- Abstract
Background: Deep grey matter pathology is a key driver of disability worsening in people with multiple sclerosis. Quantitative susceptibility mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique which quantifies local magnetic susceptibility from variations in phase produced by changes in the local magnetic field. In the deep grey matter, susceptibility has previously been validated against tissue iron concentration. However, it currently remains unknown whether susceptibility is abnormal in older progressive MS cohorts, and whether it correlates with disability., Objectives: To investigate differences in mean regional susceptibility in deep grey matter between people with secondary progressive multiple sclerosis (SPMS) and healthy controls; to examine in patients the relationships between deep grey matter susceptibility and clinical and imaging measures of disease severity., Methods: Baseline data from a subgroup of the MS-STAT2 trial (simvastatin vs. placebo in SPMS, NCT03387670) were included. The subgroup underwent clinical assessments and an advanced MRI protocol at 3T. A cohort of age-matched healthy controls underwent the same MRI protocol. Susceptibility maps were reconstructed using a robust QSM pipeline from multi-echo 3D gradient-echo sequence. Regions of interest (ROIs) in the thalamus, globus pallidus and putamen were segmented from 3D T1-weighted images, and lesions segmented from 3D fluid-attenuated inversion recovery images. Linear regression was used to compare susceptibility from ROIs between patients and controls, adjusting for age and sex. Where significant differences were found, we further examined the associations between ROI susceptibility and clinical and imaging measures of MS severity., Results: 149 SPMS (77% female; mean age: 53 yrs; median Expanded Disability Status Scale (EDSS): 6.0 [interquartile range 4.5-6.0]) and 33 controls (52% female, mean age: 57) were included.Thalamic susceptibility was significantly lower in SPMS compared to controls: mean (SD) 28.6 (12.8) parts per billion (ppb) in SPMS vs. 39.2 (12.7) ppb in controls; regression coefficient: -12.0 [95% confidence interval: -17.0 to -7.1], p < 0.001. In contrast, globus pallidus and putamen susceptibility were similar between both groups.In SPMS, a 10 ppb lower thalamic susceptibility was associated with a +0.13 [+0.01 to +0.24] point higher EDSS (p < 0.05), a -2.4 [-3.8 to -1.0] point lower symbol digit modality test (SDMT, p = 0.001), and a -2.4 [-3.7 to -1.1] point lower Sloan low contrast acuity, 2.5% (p < 0.01).Lower thalamic susceptibility was also strongly associated with a higher T2 lesion volume (T2LV, p < 0.001) and lower normalised whole brain, deep grey matter and thalamic volumes (all p < 0.001)., Conclusions: The reduced thalamic susceptibility found in SPMS compared to controls suggests that thalamic iron concentrations are lower at this advanced stage of the disease. The observed relationships between lower thalamic susceptibility and more severe physical, cognitive and visual disability suggests that reductions in thalamic iron may correlate with important mechanisms of clinical disease progression. Such mechanisms appear to intimately link reductions in thalamic iron with higher T2LV and the development of thalamic atrophy, encouraging further research into QSM-derived thalamic susceptibility as a biomarker of disease severity in SPMS., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
4. Whole-body Magnetic Resonance Imaging as a Treatment Response Biomarker in Castration-resistant Prostate Cancer with Bone Metastases: The iPROMET Clinical Trial.
- Author
-
Garcia-Ruiz A, Macarro C, Zacchi F, Morales-Barrera R, Grussu F, Casanova-Salas I, Sanguedolce F, Gonzalez M, Cresta-Morgado P, de Albert M, Garcia-Bennett J, Marmolejo D, Planas J, Roche S, Mast R, Zatse C, Piulats JM, Herrera-Imbroda B, Regis L, Agundez L, Olmos D, Calvo N, Escobar M, Carles J, Mateo J, and Perez-Lopez R
- Subjects
- Humans, Male, Treatment Outcome, Bone Neoplasms secondary, Bone Neoplasms diagnostic imaging, Prostatic Neoplasms, Castration-Resistant pathology, Prostatic Neoplasms, Castration-Resistant diagnostic imaging, Prostatic Neoplasms, Castration-Resistant drug therapy, Magnetic Resonance Imaging, Whole Body Imaging
- Published
- 2024
- Full Text
- View/download PDF
5. Enhancing Tumor Microstructural Quantification With Machine Learning and Diffusion-Relaxation MRI.
- Author
-
Macarro C, Bernatowicz K, Garcia-Ruiz A, Serna G, Monreal-Agüero C, Simonetti S, Figini M, Corral JF, Garay V, Vidorreta M, García-Polo García P, Merino X, Mast R, Roson N, Vieito M, Escobar M, Alexander DC, Toledo R, Nuciforo P, Garralda E, Perez-Lopez R, and Grussu F
- Published
- 2024
- Full Text
- View/download PDF
6. Erratum for: Identification of Precise 3D CT Radiomics for Habitat Computation by Machine Learning in Cancer.
- Author
-
Prior O, Macarro C, Navarro V, Monreal C, Ligero M, Garcia-Ruiz A, Serna G, Simonetti S, Braña I, Vieito M, Escobar M, Capdevila J, Byrne AT, Dienstmann R, Toledo R, Nuciforo P, Garralda E, Grussu F, Bernatowicz K, and Perez-Lopez R
- Published
- 2024
- Full Text
- View/download PDF
7. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study.
- Author
-
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA 2nd, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, and Nestrašil I
- Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure., Competing Interests: Declaration of interests Since June 2022, Dr. A.K. Smith has been employed by GE HealthCare. This article was co-authored by Dr. Smith in his personal capacity. The opinions expressed in the article are his in and do not necessarily reflect the views of GE HealthCare. Since August 2022, Dr. M. M. Laganà has been employed by Canon Medical Systems srl, Rome, Italy. This article was co-authored by Dr. M. M. Laganà in her personal capacity. The opinions expressed in the article are her own and do not necessarily reflect the views of Canon Medical Systems. Since September 2023, Dr. Papp has been an employee of Siemens Healthcare AB, Sweden. This article was co-authored by Dr. Papp in his personal capacity. The views and opinions expressed in this article are his own and do not necessarily reflect the views of Siemens Healthcare AB, or Siemens Healthineers AG. Since January 2024, Dr. Barry has been employed by the National Institute of Biomedical Imaging and Bioengineering at the NIH. This article was co-authored by Robert Barry in his personal capacity. The opinions expressed in the article are his own and do not necessarily reflect the views of the NIH, the Department of Health and Human Services, or the United States government. Guillaume Gilbert is an employee of Philips Healthcare. S Llufriu received compensation for consulting services and speaker honoraria from Biogen Idec, Novartis, Bristol Myer Squibb Genzyme, Sanofi Jansen and Merck. The Max Planck Institute for Human Cognitive and Brain Sciences and Wellcome Centre for Human Neuroimaging have institutional research agreements with Siemens Healthcare. NW holds a patent on acquisition of MRI data during spoiler gradients (US 10,401,453 B2). NW was a speaker at an event organized by Siemens Healthcare and was reimbursed for the travel expenses. The other authors declare no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
8. What contributes to disability in progressive MS? A brain and cervical cord-matched quantitative MRI study.
- Author
-
Tur C, Battiston M, Yiannakas MC, Collorone S, Calvi A, Prados F, Kanber B, Grussu F, Ricciardi A, Pajak P, Martinelli D, Schneider T, Ciccarelli O, Samson RS, and Wheeler-Kingshott CAG
- Subjects
- Humans, Brain pathology, Magnetic Resonance Imaging methods, Gray Matter pathology, Cervical Cord pathology, Multiple Sclerosis pathology, Multiple Sclerosis, Chronic Progressive pathology
- Abstract
Background: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability., Methods: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations., Results: Several qMRI/volumetric differences between patients and controls were observed ( p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability., Conclusion: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
9. An accessible deep learning tool for voxel-wise classification of brain malignancies from perfusion MRI.
- Author
-
Garcia-Ruiz A, Pons-Escoda A, Grussu F, Naval-Baudin P, Monreal-Aguero C, Hermann G, Karunamuni R, Ligero M, Lopez-Rueda A, Oleaga L, Berbís MÁ, Cabrera-Zubizarreta A, Martin-Noguerol T, Luna A, Seibert TM, Majos C, and Perez-Lopez R
- Subjects
- Humans, Quality of Life, Magnetic Resonance Imaging methods, Perfusion, Deep Learning, Brain Neoplasms diagnostic imaging
- Abstract
Noninvasive differential diagnosis of brain tumors is currently based on the assessment of magnetic resonance imaging (MRI) coupled with dynamic susceptibility contrast (DSC). However, a definitive diagnosis often requires neurosurgical interventions that compromise patients' quality of life. We apply deep learning on DSC images from histology-confirmed patients with glioblastoma, metastasis, or lymphoma. The convolutional neural network trained on ∼50,000 voxels from 40 patients provides intratumor probability maps that yield clinical-grade diagnosis. Performance is tested in 400 additional cases and an external validation cohort of 128 patients. The tool reaches a three-way accuracy of 0.78, superior to the conventional MRI metrics cerebral blood volume (0.55) and percentage of signal recovery (0.59), showing high value as a support diagnostic tool. Our open-access software, Diagnosis In Susceptibility Contrast Enhancing Regions for Neuro-oncology (DISCERN), demonstrates its potential in aiding medical decisions for brain tumor diagnosis using standard-of-care MRI., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. Identification of Precise 3D CT Radiomics for Habitat Computation by Machine Learning in Cancer.
- Author
-
Prior O, Macarro C, Navarro V, Monreal C, Ligero M, Garcia-Ruiz A, Serna G, Simonetti S, Braña I, Vieito M, Escobar M, Capdevila J, Byrne AT, Dienstmann R, Toledo R, Nuciforo P, Garralda E, Grussu F, Bernatowicz K, and Perez-Lopez R
- Subjects
- Humans, Male, Middle Aged, Retrospective Studies, Reproducibility of Results, Radiomics, Tomography, X-Ray Computed methods, Machine Learning, Lung Neoplasms diagnostic imaging, Liver Neoplasms diagnostic imaging
- Abstract
Purpose To identify precise three-dimensional radiomics features in CT images that enable computation of stable and biologically meaningful habitats with machine learning for cancer heterogeneity assessment. Materials and Methods This retrospective study included 2436 liver or lung lesions from 605 CT scans (November 2010-December 2021) in 331 patients with cancer (mean age, 64.5 years ± 10.1 [SD]; 185 male patients). Three-dimensional radiomics were computed from original and perturbed (simulated retest) images with different combinations of feature computation kernel radius and bin size. The lower 95% confidence limit (LCL) of the intraclass correlation coefficient (ICC) was used to measure repeatability and reproducibility. Precise features were identified by combining repeatability and reproducibility results (LCL of ICC ≥ 0.50). Habitats were obtained with Gaussian mixture models in original and perturbed data using precise radiomics features and compared with habitats obtained using all features. The Dice similarity coefficient (DSC) was used to assess habitat stability. Biologic correlates of CT habitats were explored in a case study, with a cohort of 13 patients with CT, multiparametric MRI, and tumor biopsies. Results Three-dimensional radiomics showed poor repeatability (LCL of ICC: median [IQR], 0.442 [0.312-0.516]) and poor reproducibility against kernel radius (LCL of ICC: median [IQR], 0.440 [0.33-0.526]) but excellent reproducibility against bin size (LCL of ICC: median [IQR], 0.929 [0.853-0.988]). Twenty-six radiomics features were precise, differing in lung and liver lesions. Habitats obtained with precise features (DSC: median [IQR], 0.601 [0.494-0.712] and 0.651 [0.52-0.784] for lung and liver lesions, respectively) were more stable than those obtained with all features (DSC: median [IQR], 0.532 [0.424-0.637] and 0.587 [0.465-0.703] for lung and liver lesions, respectively; P < .001). In the case study, CT habitats correlated quantitatively and qualitatively with heterogeneity observed in multiparametric MRI habitats and histology. Conclusion Precise three-dimensional radiomics features were identified on CT images that enabled tumor heterogeneity assessment through stable tumor habitat computation. Keywords: CT, Diffusion-weighted Imaging, Dynamic Contrast-enhanced MRI, MRI, Radiomics, Unsupervised Learning, Oncology, Liver, Lung Supplemental material is available for this article . © RSNA, 2024 See also the commentary by Sagreiya in this issue.
- Published
- 2024
- Full Text
- View/download PDF
11. Fibrolipomatous hamartoma of the median nerve in a child with carpal tunnel syndrome: imaging findings and literature review.
- Author
-
Paolantonio G, Cirillo M, Grussu F, Giancristoforo S, Bascetta S, Parapatt GK, Rollo M, and Tomà P
- Subjects
- Adolescent, Humans, Child, Preschool, Adult, Child, Median Nerve diagnostic imaging, Median Nerve surgery, Biopsy, Magnetic Resonance Imaging, Carpal Tunnel Syndrome diagnostic imaging, Carpal Tunnel Syndrome surgery, Lipoma complications, Hamartoma complications, Hamartoma diagnostic imaging, Hamartoma surgery
- Abstract
Fibrolipomatous hamartoma of the median nerve is an uncommon benign tumour of the childhood, which usually manifests in adolescents or adulthood with signs of compressive neuropathy at wrist. Symptomatic tumour is unusual in children below 5 years age and can be underdiagnosed. Magnetic resonance imaging provides pathognomonic features for the diagnosis, obviating the need for biopsy. Although standard ultrasonography is frequently the first-line imaging approach in the evaluation of soft-tissue masses, sonographic findings of this lesion are less frequently reported and have to be kept in mind by radiologist. We report the unusual case of carpal tunnel syndrome secondary to fibrolipomatous hamartoma of the median nerve in a 4-year-old child successfully treated with surgical carpal tunnel release., (© 2022. Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB).)
- Published
- 2023
- Full Text
- View/download PDF
12. Multimodal Analysis of the Visual Pathways in Friedreich's Ataxia Reveals Novel Biomarkers.
- Author
-
Thomas-Black G, Altmann DR, Crook H, Solanky N, Carrasco FP, Battiston M, Grussu F, Yiannakas MC, Kanber B, Jolly JK, Brett J, Downes SM, Moran M, Chan PK, Adewunmi E, Gandini Wheeler-Kingshott CAM, Németh AH, Festenstein R, Bremner F, and Giunti P
- Subjects
- Humans, Visual Pathways diagnostic imaging, Visual Acuity, Retina diagnostic imaging, Tomography, Optical Coherence methods, Friedreich Ataxia genetics, Optic Nerve Diseases
- Abstract
Background: Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level., Methods: We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI., Results: We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing., Conclusion: Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society., (© 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)
- Published
- 2023
- Full Text
- View/download PDF
13. Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol.
- Author
-
Boonsuth R, Battiston M, Grussu F, Samlidou CM, Calvi A, Samson RS, Gandini Wheeler-Kingshott CAM, and Yiannakas MC
- Subjects
- Humans, Feasibility Studies, Reproducibility of Results, Sciatic Nerve diagnostic imaging, Magnetic Resonance Spectroscopy, Tomography, X-Ray Computed, Magnetic Resonance Imaging methods
- Abstract
Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
14. Patterns of inflammation, microstructural alterations, and sodium accumulation define multiple sclerosis subtypes after 15 years from onset.
- Author
-
Ricciardi A, Grussu F, Kanber B, Prados F, Yiannakas MC, Solanky BS, Riemer F, Golay X, Brownlee W, Ciccarelli O, Alexander DC, and Gandini Wheeler-Kingshott CAM
- Abstract
Introduction: Conventional MRI is routinely used for the characterization of pathological changes in multiple sclerosis (MS), but due to its lack of specificity is unable to provide accurate prognoses, explain disease heterogeneity and reconcile the gap between observed clinical symptoms and radiological evidence. Quantitative MRI provides measures of physiological abnormalities, otherwise invisible to conventional MRI, that correlate with MS severity. Analyzing quantitative MRI measures through machine learning techniques has been shown to improve the understanding of the underlying disease by better delineating its alteration patterns., Methods: In this retrospective study, a cohort of healthy controls (HC) and MS patients with different subtypes, followed up 15 years from clinically isolated syndrome (CIS), was analyzed to produce a multi-modal set of quantitative MRI features encompassing relaxometry, microstructure, sodium ion concentration, and tissue volumetry. Random forest classifiers were used to train a model able to discriminate between HC, CIS, relapsing remitting (RR) and secondary progressive (SP) MS patients based on these features and, for each classification task, to identify the relative contribution of each MRI-derived tissue property to the classification task itself., Results and Discussion: Average classification accuracy scores of 99 and 95% were obtained when discriminating HC and CIS vs. SP, respectively; 82 and 83% for HC and CIS vs. RR; 76% for RR vs. SP, and 79% for HC vs. CIS. Different patterns of alterations were observed for each classification task, offering key insights in the understanding of MS phenotypes pathophysiology: atrophy and relaxometry emerged particularly in the classification of HC and CIS vs. MS, relaxometry within lesions in RR vs. SP, sodium ion concentration in HC vs. CIS, and microstructural alterations were involved across all tasks., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Ricciardi, Grussu, Kanber, Prados, Yiannakas, Solanky, Riemer, Golay, Brownlee, Ciccarelli, Alexander and Gandini Wheeler-Kingshott.)
- Published
- 2023
- Full Text
- View/download PDF
15. Differentiating Multiple Sclerosis From AQP4-Neuromyelitis Optica Spectrum Disorder and MOG-Antibody Disease With Imaging.
- Author
-
Cortese R, Prados Carrasco F, Tur C, Bianchi A, Brownlee W, De Angelis F, De La Paz I, Grussu F, Haider L, Jacob A, Kanber B, Magnollay L, Nicholas RS, Trip A, Yiannakas M, Toosy AT, Hacohen Y, Barkhof F, and Ciccarelli O
- Subjects
- Humans, Aquaporin 4, Myelin-Oligodendrocyte Glycoprotein, Retina pathology, Autoantibodies, Neuromyelitis Optica, Multiple Sclerosis diagnostic imaging, Multiple Sclerosis, Relapsing-Remitting diagnostic imaging
- Abstract
Background and Objectives: Relapsing-remitting multiple sclerosis (RRMS), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) may have overlapping clinical features. There is an unmet need for imaging markers that differentiate between them when serologic testing is unavailable or ambiguous. We assessed whether imaging characteristics typical of MS discriminate RRMS from AQP4-NMOSD and MOGAD, alone and in combination., Methods: Adult, nonacute patients with RRMS, APQ4-NMOSD, and MOGAD and healthy controls were prospectively recruited at the National Hospital for Neurology and Neurosurgery (London, United Kingdom) and the Walton Centre (Liverpool, United Kingdom) between 2014 and 2019. They underwent conventional and advanced brain, cord, and optic nerve MRI and optical coherence tomography (OCT)., Results: A total of 91 consecutive patients (31 RRMS, 30 APQ4-NMOSD, and 30 MOGAD) and 34 healthy controls were recruited. The most accurate measures differentiating RRMS from AQP4-NMOSD were the proportion of lesions with the central vein sign (CVS) (84% vs 33%, accuracy/specificity/sensitivity: 91/88/93%, p < 0.001), followed by cortical lesions (median: 2 [range: 1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/90/77%, p = 0.002) and white matter lesions (mean: 39.07 [±25.8] vs 9.5 [±14], accuracy/specificity/sensitivity: 78/84/73%, p = 0.001). The combination of higher proportion of CVS, cortical lesions, and optic nerve magnetization transfer ratio reached the highest accuracy in distinguishing RRMS from AQP4-NMOSD (accuracy/specificity/sensitivity: 95/92/97%, p < 0.001). The most accurate measures favoring RRMS over MOGAD were white matter lesions (39.07 [±25.8] vs 1 [±2.3], accuracy/specificity/sensitivity: 94/94/93%, p = 0.006), followed by cortical lesions (2 [1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/97/71%, p = 0.004), and retinal nerve fiber layer thickness (RNFL) (mean: 87.54 [±13.83] vs 75.54 [±20.33], accuracy/specificity/sensitivity: 80/79/81%, p = 0.009). Higher cortical lesion number combined with higher RNFL thickness best differentiated RRMS from MOGAD (accuracy/specificity/sensitivity: 84/92/77%, p < 0.001)., Discussion: Cortical lesions, CVS, and optic nerve markers achieve a high accuracy in distinguishing RRMS from APQ4-NMOSD and MOGAD. This information may be useful in clinical practice, especially outside the acute phase and when serologic testing is ambiguous or not promptly available., Classification of Evidence: This study provides Class II evidence that selected conventional and advanced brain, cord, and optic nerve MRI and OCT markers distinguish adult patients with RRMS from AQP4-NMOSD and MOGAD., (Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.)
- Published
- 2023
- Full Text
- View/download PDF
16. Diffuse Large B-Cell Epstein-Barr Virus-Positive Primary CNS Lymphoma in Non-AIDS Patients: High Diagnostic Accuracy of DSC Perfusion Metrics.
- Author
-
Pons-Escoda A, García-Ruíz A, Naval-Baudin P, Grussu F, Viveros M, Vidal N, Bruna J, Plans G, Cos M, Perez-Lopez R, and Majós C
- Subjects
- Humans, Herpesvirus 4, Human, Retrospective Studies, Perfusion, Epstein-Barr Virus Infections complications, Epstein-Barr Virus Infections diagnostic imaging, Glioblastoma, Lymphoma, Large B-Cell, Diffuse diagnostic imaging, Lymphoma, Large B-Cell, Diffuse pathology
- Abstract
Background and Purpose: Immunodeficiency-associated CNS lymphoma may occur in different clinical scenarios beyond AIDS. This subtype of CNS lymphoma is diffuse large B-cell and Epstein-Barr virus-positive. Its accurate presurgical diagnosis is often unfeasible because it appears as ring-enhancing lesions mimicking glioblastoma or metastasis. In this article, we describe clinicoradiologic features and test the performance of DSC-PWI metrics for presurgical identification., Materials and Methods: Patients without AIDS with histologically confirmed diffuse large B-cell Epstein-Barr virus-positive primary CNS lymphoma (December 2010 to January 2022) and diagnostic MR imaging without onco-specific treatment were retrospectively studied. Clinical, demographic, and conventional imaging data were reviewed. Previously published DSC-PWI time-intensity curve analysis methodology, to presurgically identify primary CNS lymphoma, was used in this particular lymphoma subtype and compared with a prior cohort of 33 patients with Epstein-Barr virus-negative CNS lymphoma, 35 with glioblastoma, and 36 with metastasis data. Normalized curves were analyzed and compared on a point-by-point basis, and previously published classifiers were tested. The standard percentage of signal recovery and CBV values were also evaluated., Results: Seven patients with Epstein-Barr virus-positive primary CNS lymphoma were included in the study. DSC-PWI normalized time-intensity curve analysis performed the best for presurgical identification of Epstein-Barr virus-positive CNS lymphoma (area under the receiver operating characteristic curve of 0.984 for glioblastoma and 0.898 for metastasis), followed by the percentage of signal recovery (0.833 and 0.873) and CBV (0.855 and 0.687)., Conclusions: When a necrotic tumor is found in a potentially immunocompromised host, neuroradiologists should consider Epstein-Barr virus-positive CNS lymphoma. DSC-PWI could be very useful for presurgical characterization, with especially strong performance of normalized time-intensity curves., (© 2022 by American Journal of Neuroradiology.)
- Published
- 2022
- Full Text
- View/download PDF
17. Multi-echo quantitative susceptibility mapping: how to combine echoes for accuracy and precision at 3 Tesla.
- Author
-
Biondetti E, Karsa A, Grussu F, Battiston M, Yiannakas MC, Thomas DL, and Shmueli K
- Subjects
- Brain diagnostic imaging, Brain Mapping methods, Humans, Image Processing, Computer-Assisted methods, Phantoms, Imaging, Magnetic Resonance Imaging methods, White Matter
- Abstract
Purpose: To compare different multi-echo combination methods for MRI QSM. Given the current lack of consensus, we aimed to elucidate how to optimally combine multi-echo gradient-recalled echo signal phase information, either before or after applying Laplacian-base methods (LBMs) for phase unwrapping or background field removal., Methods: Multi-echo gradient-recalled echo data were simulated in a numerical head phantom, and multi-echo gradient-recalled echo images were acquired at 3 Tesla in 10 healthy volunteers. To enable image-based estimation of gradient-recalled echo signal noise, 5 volunteers were scanned twice in the same session without repositioning. Five QSM processing pipelines were designed: 1 applied nonlinear phase fitting over TEs before LBMs; 2 applied LBMs to the TE-dependent phase and then combined multiple TEs via either TE-weighted or SNR-weighted averaging; and 2 calculated TE-dependent susceptibility maps via either multi-step or single-step QSM and then combined multiple TEs via magnitude-weighted averaging. Results from different pipelines were compared using visual inspection; summary statistics of susceptibility in deep gray matter, white matter, and venous regions; phase noise maps (error propagation theory); and, in the healthy volunteers, regional fixed bias analysis (Bland-Altman) and regional differences between the means (nonparametric tests)., Results: Nonlinearly fitting the multi-echo phase over TEs before applying LBMs provided the highest regional accuracy of χ $$ \chi $$ and the lowest phase noise propagation compared to averaging the LBM-processed TE-dependent phase. This result was especially pertinent in high-susceptibility venous regions., Conclusion: For multi-echo QSM, we recommend combining the signal phase by nonlinear fitting before applying LBMs., (© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
18. SENSE EPI reconstruction with 2D phase error correction and channel-wise noise removal.
- Author
-
Powell E, Schneider T, Battiston M, Grussu F, Toosy A, Clayden JD, and Wheeler-Kingshott CAMG
- Subjects
- Algorithms, Artifacts, Brain, Humans, Phantoms, Imaging, Echo-Planar Imaging methods, Image Processing, Computer-Assisted methods
- Abstract
Purpose: To develop a robust reconstruction pipeline for EPI data that enables 2D Nyquist phase error correction using sensitivity encoding without incurring major noise artifacts in low SNR data., Methods: SENSE with 2D phase error correction (PEC-SENSE) was combined with channel-wise noise removal using Marcenko-Pastur principal component analysis (MPPCA) to simultaneously eliminate Nyquist ghost artifacts in EPI data and mitigate the noise amplification associated with phase correction using parallel imaging. The proposed pipeline (coined SPECTRE) was validated in phantom DW-EPI data using the accuracy and precision of diffusion metrics; ground truth values were obtained from data acquired with a spin echo readout. Results from the SPECTRE pipeline were compared against PEC-SENSE reconstructions with three alternate denoising strategies: (i) no denoising; (ii) denoising of magnitude data after image formation; (iii) denoising of complex data after image formation. SPECTRE was then tested using high b $$ b $$ -value (i.e., low SNR) diffusion data (up to b = 3000 $$ b=3000 $$ s/mm 2 $$ {}^2 $$ ) in four healthy subjects., Results: Noise amplification associated with phase error correction incurred a 23% bias in phantom mean diffusivity (MD) measurements. Phantom MD estimates using the SPECTRE pipeline were within 8% of the ground truth value. In healthy volunteers, the SPECTRE pipeline visibly corrected Nyquist ghost artifacts and reduced associated noise amplification in high b $$ b $$ -value data., Conclusion: The proposed reconstruction pipeline is effective in correcting low SNR data, and improves the accuracy and precision of derived diffusion metrics., (© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
19. The clinical effectiveness of an integrated multidisciplinary evidence-based program to prevent intraoperative pressure injuries in high-risk children undergoing long-duration surgical procedures: A quality improvement study.
- Author
-
Ciprandi G, Crucianelli S, Zama M, Antonielli G, Armani R, Aureli S, Barra G, Beetham CJC, Bernardini G, Cancani F, Carai A, Cajozzo M, Carlesi L, Cialdella A, Ciaralli I, Ciliento G, Corsetti T, De Chirico B, Di Corato P, Dotta A, Filippelli S, Franci M, Frattaroli J, Grussu F, Lico S, Losani P, Giergji M, Magli S, Marino SF, Mongelli A, Nazzarri M, Pace M, Palmieri G, Pannacci I, Paparozzi F, Pomponi M, Portanova A, Preziosi A, Ragni A, Raponi M, Renzetti T, Rizzo M, Roberti M, Sasso E, Savarese I, Secci S, Selvaggio D, Serafini L, Spuntarelli G, Urbani U, Vanzi V, Permatunga R, and Santamaria N
- Subjects
- Humans, Child, Quality Improvement, Prospective Studies, Iatrogenic Disease prevention & control, Treatment Outcome, Pressure Ulcer etiology, Pressure Ulcer prevention & control, Pressure Ulcer epidemiology
- Abstract
The prevention of hospital-acquired pressure injuries (HAPIs) in children undergoing long-duration surgical procedures is of critical importance due to the potential for catastrophic sequelae of these generally preventable injuries for the child and their family. Long-duration surgical procedures in children have the potential to result in high rates of HAPI due to physiological factors and the difficulty or impossibility of repositioning these patients intraoperatively. We developed and implemented a multi-modal, multi-disciplinary translational HAPI prevention quality improvement program at a large European Paediatric University Teaching Hospital. The intervention comprised the establishment of wound prevention teams, modified HAPI risk assessment tools, specific education, and the use of prophylactic dressings and fluidized positioners during long-duration surgical procedures. As part of the evaluation of the effectiveness of the program in reducing intraoperative HAPI, we conducted a prospective cohort study of 200 children undergoing long-duration surgical procedures and compared their outcomes with a matched historical cohort of 200 children who had undergone similar surgery the previous year. The findings demonstrated a reduction in HAPI in the intervention cohort of 80% (p < 0.01) compared to the comparator group when controlling for age, pathology, comorbidity, and surgical duration. We believe that the findings demonstrate that it is possible to significantly decrease HAPI incidence in these highly vulnerable children by using an evidence-based, multi-modal, multidisciplinary HAPI prevention strategy., (© 2022 The Authors. International Wound Journal published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
20. Use of acellular intact fish skin grafts in treating acute paediatric wounds during the COVID-19 pandemic: a case series.
- Author
-
Ciprandi G, Kjartansson H, Grussu F, Baldursson BT, Frattaroli J, Urbani U, and Zama M
- Subjects
- Animals, Fishes, Humans, Pandemics, Skin Transplantation methods, Wound Healing, COVID-19, Negative-Pressure Wound Therapy methods
- Abstract
Objective: More specific strategies are needed to support children requiring skin grafting. Our goal was to identify procedures that reduce operating times, post-operative complications, pain and length of hospital stay. Patient safety, optimal wound bed support and quick micro-debridement with locoregional anaesthesia were prioritised. Ultimately, a novel acellular fish skin graft (FSG) derived from north Atlantic cod was selected for use., Method: We admitted consecutive paediatric patients with various lesions requiring skin grafting for definitive wound closure. All FSGs were applied and bolstered in the operating room following debridement., Results: In a cohort of 15 patients, the average age was 8 years and 9 months (4 years 1 month-13 years 5 months). Negative pressure wound therapy (NPWT) was given to 12 patients. Rapid wound healing was observed in all patients, with a wound area coverage of 100% and complete healing in 95% of wounds. Time until engraftment in patients receiving NPWT was reduced by about a half (to an average 12 days) from our standard experience of 21 days. Ten patients received locoregional anaesthesia and were discharged after day surgery. The operating time was <60 minutes, and no complications or allergic reactions were reported. Excellent pliability of the healed wound was achieved in all patients, without signs of itching and scratching in the postoperative period. This case series is the first and largest using FSG to treat paediatric patients with different wound aetiologies. We attribute the rapid transition to acute wound status and the good pliability of the new epidermal-dermal complex to the preserved molecular components of the FSG, including omega-3., Conclusion: FSG represents an innovative and sustainable solution for paediatric wound care that results in shorter surgery time and reduced hospital stays, with accelerated wound healing times.
- Published
- 2022
- Full Text
- View/download PDF
21. Comparison of multicenter MRI protocols for visualizing the spinal cord gray matter.
- Author
-
Cohen-Adad J, Alonso-Ortiz E, Alley S, Lagana MM, Baglio F, Vannesjo SJ, Karbasforoushan H, Seif M, Seifert AC, Xu J, Kim JW, Labounek R, Vojtíšek L, Dostál M, Valošek J, Samson RS, Grussu F, Battiston M, Gandini Wheeler-Kingshott CAM, Yiannakas MC, Gilbert G, Schneider T, Johnson B, and Prados F
- Subjects
- Gray Matter diagnostic imaging, Humans, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, Multicenter Studies as Topic, Spinal Cord diagnostic imaging, Cervical Cord, White Matter diagnostic imaging
- Abstract
Purpose: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter., Methods: In vivo data of the cervical spinal cord were collected from nine different imaging centers. Data processing consisted of automatically segmenting the spinal cord and its gray matter and co-registering back-to-back scans. We computed the SNR using two methods (SNR_single using a single scan and SNR_diff using the difference between back-to-back scans) and the white/gray matter contrast-to-noise ratio per unit time. Synthetic phantom data were generated to evaluate the metrics performance. Experienced radiologists qualitatively scored the images. We ran the same processing on an open-access multicenter data set of the spinal cord MRI (N = 267 participants)., Results: Qualitative assessments indicated comparable image quality for 3T and 7T scans. Spatial resolution was higher at higher field strength, and image quality at 1.5 T was found to be moderate to low. The proposed quantitative metrics were found to be robust to underlying changes to the SNR and contrast; however, the SNR_single method lacked accuracy when there were excessive partial-volume effects., Conclusion: We propose quality assessment criteria and metrics for gray-matter visualization and apply them to different protocols. The proposed criteria and metrics, the analyzed protocols, and our open-source code can serve as a benchmark for future optimization of spinal cord gray-matter imaging protocols., (© 2022 International Society for Magnetic Resonance in Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
22. Diffusion MRI signal cumulants and hepatocyte microstructure at fixed diffusion time: Insights from simulations, 9.4T imaging, and histology.
- Author
-
Grussu F, Bernatowicz K, Casanova-Salas I, Castro N, Nuciforo P, Mateo J, Barba I, and Perez-Lopez R
- Subjects
- Animals, Contrast Media, Diffusion, Hepatocytes, Mice, Water, Diffusion Magnetic Resonance Imaging methods, Magnetic Resonance Imaging
- Abstract
Purpose: Relationships between diffusion-weighted MRI signals and hepatocyte microstructure were investigated to inform liver diffusion MRI modeling, focusing on the following question: Can cell size and diffusivity be estimated at fixed diffusion time, realistic SNR, and negligible contribution from extracellular/extravascular water and exchange?, Methods: Monte Carlo simulations were performed within synthetic hepatocytes for varying cell size/diffusivity L / D 0 , and clinical protocols (single diffusion encoding; maximum b-value: {1000, 1500, 2000} s/mm
2 ; 5 unique gradient duration/separation pairs; SNR = { ∞ , 100, 80, 40, 20}), accounting for heterogeneity in ( D 0 , L ) and perfusion contamination. Diffusion ( D ) and kurtosis ( K ) coefficients were calculated, and relationships between ( D 0 , L ) and ( D , K ) were visualized. Functions mapping ( D , K ) to ( D 0 , L ) were computed to predict unseen ( D 0 , L ) values, tested for their ability to classify discrete cell-size contrasts, and deployed on 9.4T ex vivo MRI-histology data of fixed mouse livers RESULTS: Relationships between ( D , K ) and ( D 0 , L ) are complex and depend on the diffusion encoding. Functions mapping D , K to ( D 0 , L ) captures salient characteristics of D 0 ( D , K ) and L ( D , K ) dependencies. Mappings are not always accurate, but they enable just under 70% accuracy in a three-class cell-size classification task (for SNR = 20, b max = 1500 s/mm2 , δ = 20 ms, and Δ = 75 ms). MRI detects cell-size contrasts in the mouse livers that are confirmed by histology, but overestimates the largest cell sizes., Conclusion: Salient information about liver cell size and diffusivity may be retrieved from minimal diffusion encodings at fixed diffusion time, in experimental conditions and pathological scenarios for which extracellular, extravascular water and exchange are negligible., (© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)- Published
- 2022
- Full Text
- View/download PDF
23. Case report of anesthesia for free fibula flap reconstruction in Ewing sarcoma: Safety and efficacy of continuous popliteal sciatic nerve block and very low doses of intravenous heparin.
- Author
-
Di Palma A, Grassi F, Cantatore LP, Tortora F, Grussu F, Zama M, and Picardo SG
- Abstract
A child with a maxillary Ewing sarcoma was operated for tumor asportation and reconstruction with free fibula flap. Adequate anticoagulation was achieved with lower doses of heparin and monitored with multiple ACT values. We used NIRS monitoring to avoid hypoperfusion. Post-operative pain relief was guarantited by local anestethic continous infusion., Competing Interests: Authors declare no competing interests., (© 2022 The Authors. Clinical Case Reports published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
24. Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis.
- Author
-
Pons-Escoda A, Garcia-Ruiz A, Naval-Baudin P, Grussu F, Fernandez JJS, Simo AC, Sarro NV, Fernandez-Coello A, Bruna J, Cos M, Perez-Lopez R, and Majos C
- Subjects
- Brain pathology, Humans, Magnetic Resonance Angiography, Magnetic Resonance Imaging methods, Male, Middle Aged, Retrospective Studies, Brain Neoplasms diagnostic imaging, Brain Neoplasms pathology, Glioblastoma diagnostic imaging
- Abstract
Objective: Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis., Methods: In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions., Results: A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%., Conclusion: This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases., Key Points: • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management., (© 2022. The Author(s), under exclusive licence to European Society of Radiology.)
- Published
- 2022
- Full Text
- View/download PDF
25. Histo-MRI map study protocol: a prospective cohort study mapping MRI to histology for biomarker validation and prediction of prostate cancer.
- Author
-
Singh S, Mathew M, Mertzanidou T, Suman S, Clemente J, Retter A, Papoutsaki MV, Smith L, Grussu F, Kasivisvanathan V, Grey A, Dinneen E, Shaw G, Carter M, Patel D, Moore CM, Atkinson D, Panagiotaki E, Haider A, Freeman A, Alexander D, and Punwani S
- Subjects
- Biomarkers, Humans, Image-Guided Biopsy, Magnetic Resonance Imaging, Male, Prospective Studies, Multiparametric Magnetic Resonance Imaging, Prostatic Neoplasms diagnostic imaging, Prostatic Neoplasms pathology
- Abstract
Introduction: Multiparametric MRI (mpMRI) is now widely used to risk stratify men with a suspicion of prostate cancer and identify suspicious regions for biopsy. However, the technique has modest specificity and a high false-positive rate, especially in men with mpMRI scored as indeterminate (3/5) or likely (4/5) to have clinically significant cancer (csPCa) (Gleason ≥3+4). Advanced MRI techniques have emerged which seek to improve this characterisation and could predict biopsy results non-invasively. Before these techniques are translated clinically, robust histological and clinical validation is required., Methods and Analysis: This study aims to clinically validate two advanced MRI techniques in a prospectively recruited cohort of men suspected of prostate cancer. Histological analysis of men undergoing biopsy or prostatectomy will be used for biological validation of biomarkers derived from Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours and Luminal Water imaging. In particular, prostatectomy specimens will be processed using three-dimension printed patient-specific moulds to allow for accurate MRI and histology mapping. The index tests will be compared with the histological reference standard to derive false positive rate and true positive rate for men with mpMRI scores which are indeterminate (3/5) or likely (4/5) to have clinically significant prostate cancer (csPCa). Histopathological validation from both biopsy and prostatectomy samples will provide the best ground truth in validating promising MRI techniques which could predict biopsy results and help avoid unnecessary biopsies in men suspected of prostate cancer., Ethics and Dissemination: Ethical approval was granted by the London-Queen Square Research Ethics Committee (19/LO/1803) on 23 January 2020. Results from the study will be presented at conferences and submitted to peer-reviewed journals for publication. Results will also be available on ClinicalTrials.gov., Trial Registration Number: NCT04792138., Competing Interests: Competing interests: The work of SP and DA is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. Veeru Kasivisvanathan is an Academic Clinical Lecturer funded by the UK National Institute for Health Research (NIHR). CMM is supported by an NIHR Research Professorship, and has additional study funding from the Medical Research Council, Cancer Research UK, PCUK, Movember, and the European Association of Urology Research Board. FG is currently supported by PREdICT, an investigator-initiated study at the Vall d’Hebron Hospital campus (Barcelona, Spain), funded by AstraZeneca., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
26. Guidelines for Vascular Anomalies by the Italian Society for the study of Vascular Anomalies (SISAV).
- Author
-
Stillo F, Mattassi R, Diociaiuti A, Neri I, Baraldini V, Dalmonte P, Amato B, Ametrano O, Amico G, Bianchini G, Campisi C, Cattaneo E, Causin F, Cavalli R, Colletti G, Corbeddu M, Coppo P, DE Fiores A, DI Giuseppe P, El Hachem M, Esposito F, Fulcheri E, Gandolfo C, Grussu F, Guglielmo A, Leuzzi M, Manunza F, Moneghini L, Monzani N, Nicodemi E, Occella C, Orso M, Pagella F, Paolantonio G, Pasetti F, Rollo M, Ruggiero F, Santecchia L, Spaccini L, Taurino M, Vaghi M, Vercellio G, Zama M, Zocca A, Aguglia M, Castronovo EL, DE Lorenzi E, Fontana E, Gusson E, Lanza J, Lizzio R, Mancardi MM, and Rosina E
- Subjects
- Humans, Italy, Vascular Diseases, Vascular Malformations diagnosis, Vascular Malformations therapy
- Published
- 2022
- Full Text
- View/download PDF
27. Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique.
- Author
-
Tur C, Grussu F, De Angelis F, Prados F, Kanber B, Calvi A, Eshaghi A, Charalambous T, Cortese R, Chard DT, Chataway J, Thompson AJ, Ciccarelli O, and Gandini Wheeler-Kingshott CAM
- Subjects
- Brain diagnostic imaging, Brain pathology, Humans, Magnetic Resonance Imaging methods, Multiple Sclerosis diagnostic imaging, Multiple Sclerosis pathology, Multiple Sclerosis, Chronic Progressive diagnostic imaging, Multiple Sclerosis, Chronic Progressive pathology, White Matter pathology
- Abstract
Predicting disability in progressive multiple sclerosis (MS) is extremely challenging. Although there is some evidence that the spatial distribution of white matter (WM) lesions may play a role in disability accumulation, the lack of well-established quantitative metrics that characterise these aspects of MS pathology makes it difficult to assess their relevance for clinical progression. This study introduces a novel approach, called SPACE-MS, to quantitatively characterise spatial distributional features of brain MS lesions, so that these can be assessed as predictors of disability accumulation. In SPACE-MS, the covariance matrix of the spatial positions of each patient's lesional voxels is computed and its eigenvalues extracted. These are combined to derive rotationally-invariant metrics known to be common and robust descriptors of ellipsoid shape such as anisotropy, planarity and sphericity. Additionally, SPACE-MS metrics include a neuraxis caudality index, which we defined for the whole-brain lesion mask as well as for the most caudal brain lesion. These indicate how distant from the supplementary motor cortex (along the neuraxis) the whole-brain mask or the most caudal brain lesions are. We applied SPACE-MS to data from 515 patients involved in three studies: the MS-SMART (NCT01910259) and MS-STAT1 (NCT00647348) secondary progressive MS trials, and an observational study of primary and secondary progressive MS. Patients were assessed on motor and cognitive disability scales and underwent structural brain MRI (1.5/3.0 T), at baseline and after 2 years. The MRI protocol included 3DT1-weighted (1x1x1mm
3 ) and 2DT2-weighted (1x1x3mm3 ) anatomical imaging. WM lesions were semiautomatically segmented on the T2-weighted scans, deriving whole-brain lesion masks. After co-registering the masks to the T1 images, SPACE-MS metrics were calculated and analysed through a series of multiple linear regression models, which were built to assess the ability of spatial distributional metrics to explain concurrent and future disability after adjusting for confounders. Patients whose WM lesions laid more caudally along the neuraxis or were more isotropically distributed in the brain (i.e. with whole-brain lesion masks displaying a high sphericity index) at baseline had greater motor and/or cognitive disability at baseline and over time, independently of brain lesion load and atrophy measures. In conclusion, here we introduced the SPACE-MS approach, which we showed is able to capture clinically relevant spatial distributional features of MS lesions independently of the sheer amount of lesions and brain tissue loss. Location of lesions in lower parts of the brain, where neurite density is particularly high, such as in the cerebellum and brainstem, and greater spatial spreading of lesions (i.e. more isotropic whole-brain lesion masks), possibly reflecting a higher number of WM tracts involved, are associated with clinical deterioration in progressive MS. The usefulness of the SPACE-MS approach, here demonstrated in MS, may be explored in other conditions also characterised by the presence of brain WM lesions., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
28. Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio.
- Author
-
Boonsuth R, Samson RS, Tur C, Battiston M, Grussu F, Schneider T, Yoneyama M, Prados F, Ttofalla A, Collorone S, Cortese R, Ciccarelli O, Gandini Wheeler-Kingshott CAM, and Yiannakas MC
- Abstract
Background: Multiple sclerosis (MS) has traditionally been regarded as a disease confined to the central nervous system (CNS). However, neuropathological, electrophysiological, and imaging studies have demonstrated that the peripheral nervous system (PNS) is also involved, with demyelination and, to a lesser extent, axonal degeneration representing the main pathophysiological mechanisms. Aim: The purpose of this study was to assess PNS damage at the lumbar plexus and sciatic nerve anatomical locations in people with relapsing-remitting MS (RRMS) and healthy controls (HCs) in vivo using magnetisation transfer ratio (MTR), which is a known imaging biomarker sensitive to alterations in myelin content in neural tissue, and not previously explored in the context of PNS damage in MS. Method: Eleven HCs (7 female, mean age 33.6 years, range 24-50) and 15 people with RRMS (12 female, mean age 38.5 years, range 30-56) were recruited for this study and underwent magnetic resonance imaging (MRI) investigations together with clinical assessments using the expanded disability status scale (EDSS). Magnetic resonance neurography (MRN) was first used for visualisation and identification of the lumbar plexus and the sciatic nerve and MTR imaging was subsequently performed using identical scan geometry to MRN, enabling straightforward co-registration of all data to obtain global and regional mean MTR measurements. Linear regression models were used to identify differences in MTR values between HCs and people with RRMS and to identify an association between MTR measures and EDSS. Results: MTR values in the sciatic nerve of people with RRMS were found to be significantly lower compared to HCs, but no significant MTR changes were identified in the lumbar plexus of people with RRMS. The median EDSS in people with RRMS was 2.0 (range, 0-3). No relationship between the MTR measures in the PNS and EDSS were identified at any of the anatomical locations studied in this cohort of people with RRMS. Conclusion: The results from this study demonstrate the presence of PNS damage in people with RRMS and support the notion that these changes, suggestive of demyelination, maybe occurring independently at different anatomical locations within the PNS. Further investigations to confirm these findings and to clarify the pathophysiological basis of these alterations are warranted., Competing Interests: FG is supported by PREdICT, a study co-funded by AstraZeneca (Spain). TS is an employee of DeepSpin (Germany) and previously worked for Philips (United Kingdom). MB is an employee of ASG Superconductors. MY is employed by Philips (Japan). AstraZeneca, Philips, DeepSpin and Superconductors were not involved in the study design; collection, analysis, interpretation of data; manuscript writing and decision to submit the manuscript for publication; or any other aspect concerning this work. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Boonsuth, Samson, Tur, Battiston, Grussu, Schneider, Yoneyama, Prados, Ttofalla, Collorone, Cortese, Ciccarelli, Gandini Wheeler-Kingshott and Yiannakas.)
- Published
- 2021
- Full Text
- View/download PDF
29. Robust imaging habitat computation using voxel-wise radiomics features.
- Author
-
Bernatowicz K, Grussu F, Ligero M, Garcia A, Delgado E, and Perez-Lopez R
- Subjects
- Humans, Lung Neoplasms diagnostic imaging, Reproducibility of Results, Diagnostic Tests, Routine methods, Image Processing, Computer-Assisted methods, Lung Neoplasms pathology, Tomography, X-Ray Computed instrumentation, Tomography, X-Ray Computed methods
- Abstract
Tumor heterogeneity has been postulated as a hallmark of treatment resistance and a cure constraint in cancer patients. Conventional quantitative medical imaging (radiomics) can be extended to computing voxel-wise features and aggregating tumor subregions with similar radiological phenotypes (imaging habitats) to elucidate the distribution of tumor heterogeneity within and among tumors. Despite the promising applications of imaging habitats, they may be affected by variability of radiomics features, preventing comparison and generalization of imaging habitats techniques. We performed a comprehensive repeatability and reproducibility analysis of voxel-wise radiomics features in more than 500 lung cancer patients with computed tomography (CT) images and demonstrated the effect of voxel-wise radiomics variability on imaging habitats computation in 30 lung cancer patients with test-retest images. Repeatable voxel-wise features characterized texture heterogeneity and were reproducible regardless of the applied feature extraction parameters. Imaging habitats computed using robust radiomics features were more stable than those computed using all features in test-retest CTs from the same patient. Nine voxel-wise radiomics features (joint energy, joint entropy, sum entropy, maximum probability, difference entropy, Imc1, Imc2, Idn and Idmn) were repeatable and reproducible. This supports their application for computing imaging habitats in lung tumors towards the discovery of previously unseen tumor heterogeneity and the development of novel non-invasive imaging biomarkers for precision medicine., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
30. Diffusion-Weighted Imaging: Recent Advances and Applications.
- Author
-
Martinez-Heras E, Grussu F, Prados F, Solana E, and Llufriu S
- Subjects
- Brain diagnostic imaging, Humans, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging
- Abstract
Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain "in vivo", and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
31. Generic acquisition protocol for quantitative MRI of the spinal cord.
- Author
-
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Wheeler-Kingshott CAMG, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA 2nd, Weiskopf N, Wise RG, Wyss PO, and Xu J
- Subjects
- Humans, Male, Adult, Image Processing, Computer-Assisted methods, Female, Spinal Cord diagnostic imaging, Magnetic Resonance Imaging methods
- Abstract
Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2021
- Full Text
- View/download PDF
32. Author Correction: Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers.
- Author
-
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler HH, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber Ii KA, Weiskopf N, Wise RG, Wyss PO, and Xu J
- Published
- 2021
- Full Text
- View/download PDF
33. Author Correction: Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers.
- Author
-
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler HH, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber Ii KA, Weiskopf N, Wise RG, Wyss PO, and Xu J
- Published
- 2021
- Full Text
- View/download PDF
34. The Versatility of the Free Vastus Lateralis Muscle Flap: Orbital Reconstruction After Removal of Complex Vascular Malformation in a Pediatric Patient.
- Author
-
Grussu F, Santecchia L, Urbani U, Spuntarelli G, Rollo M, El Hachem M, Romanzo A, and Zama M
- Abstract
Introduction: Vascular orbital lesions in pediatric population represent a demanding therapeutic challenge which requires a multidisciplinary team. In severe cases, orbital enucleation can be considered. Surgical management of enucleated orbital region in children, differently from the adults, represents a challenging procedure owing to the intrinsic relation between volume replacement and normal orbital growth. Many reconstructive options have been proposed, and many donor sites have been utilized for this purpose but each one have demonstrated potential disadvantages. Despite its well-known versatility, no report of the vastus lateralis free flap in children requiring orbital reconstruction exists in literature. Herein, we propose this surgical strategy as a valid option for the reconstruction of an extended orbital defect in a pediatric patient suffering from a mixed type of vascular malformation. Material and Methods: A patient was referred from a foreign country with an unclear medical history, presenting exorbitism and exophthalmos, proptosis of the eyeball, visus 4/10, and limited ocular motility. We made clinical-instrumental investigations with a diagnosis of complex vascular malformation. It expanded in intraorbital and retrorbital space with bulb anterior dislocation and optic nerve involvement. We performed an emptying of the orbital content via transconjunctival and via coronal incision with eyelid preservation. A free vastus lateralis muscle flap was used for reconstruction, filling the orbital cavity. We anastomosed the flap on the superficial temporal artery. An ocular conformator was then positioned. Results: We report the result at 12 months, showing a good orbital rehabilitation with an adequate prosthetic cavity, a good recovery of volume and facial symmetry, guaranteeing balanced orbital and periorbital growth. There were no major or minor complications associated with the procedure. Discussion: The reconstruction of the orbit remains a "surgical challenge" both in adults, whose goal is the restoration of volume, adequate symmetry and facial esthetics, and children, in which correcting the asymmetry has the additional objective to balance orbital growth. Many reconstructive techniques have been proposed, including the use of free flaps. The versatility of the free vastus lateralis muscle flap is well-known. It offers adequate amount of tissue with minimal morbidity to the donor site, provides a long pedicle, gives the possibility of simultaneous work in a double team, and has a constant anatomy and a safe and rapid dissection. There are no descriptions of its use for pediatric orbital reconstructions. Conclusions: In our opinion, the free vastus lateralis flap should be included as one of the best option for orbital pediatric reconstruction after enucleation., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Grussu, Santecchia, Urbani, Spuntarelli, Rollo, El Hachem, Romanzo and Zama.)
- Published
- 2021
- Full Text
- View/download PDF
35. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers.
- Author
-
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler HH, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber Ii KA, Weiskopf N, Wise RG, Wyss PO, and Xu J
- Subjects
- Adult, Female, Humans, Image Processing, Computer-Assisted, Male, Reproducibility of Results, Magnetic Resonance Imaging, Neuroimaging, Spinal Cord diagnostic imaging, Spinal Cord ultrastructure
- Abstract
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
36. Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event.
- Author
-
Collorone S, Prados F, Kanber B, Cawley NM, Tur C, Grussu F, Solanky BS, Yiannakas M, Davagnanam I, Wheeler-Kingshott CAMG, Barkhof F, Ciccarelli O, and Toosy AT
- Subjects
- Adult, Brain metabolism, Brain pathology, Cross-Sectional Studies, Demyelinating Diseases metabolism, Demyelinating Diseases pathology, Female, Humans, Magnetic Resonance Imaging methods, Male, Multiple Sclerosis metabolism, Multiple Sclerosis pathology, Brain diagnostic imaging, Demyelinating Diseases diagnostic imaging, Multiple Sclerosis diagnostic imaging, Neuroimaging methods
- Abstract
In early multiple sclerosis, a clearer understanding of normal-brain tissue microstructural and metabolic abnormalities will provide valuable insights into its pathophysiology. We used multi-parametric quantitative MRI to detect alterations in brain tissues of patients with their first demyelinating episode. We acquired neurite orientation dispersion and density imaging [to investigate morphology of neurites (dendrites and axons)] and 23Na MRI (to estimate total sodium concentration, a reflection of underlying changes in metabolic function). In this cross-sectional study, we enrolled 42 patients diagnosed with clinically isolated syndrome or multiple sclerosis within 3 months of their first demyelinating event and 16 healthy controls. Physical and cognitive scales were assessed. At 3 T, we acquired brain and spinal cord structural scans, and neurite orientation dispersion and density imaging. Thirty-two patients and 13 healthy controls also underwent brain 23Na MRI. We measured neurite density and orientation dispersion indices and total sodium concentration in brain normal-appearing white matter, white matter lesions, and grey matter. We used linear regression models (adjusting for brain parenchymal fraction and lesion load) and Spearman correlation tests (significance level P ≤ 0.01). Patients showed higher orientation dispersion index in normal-appearing white matter, including the corpus callosum, where they also showed lower neurite density index and higher total sodium concentration, compared with healthy controls. In grey matter, compared with healthy controls, patients demonstrated: lower orientation dispersion index in frontal, parietal and temporal cortices; lower neurite density index in parietal, temporal and occipital cortices; and higher total sodium concentration in limbic and frontal cortices. Brain volumes did not differ between patients and controls. In patients, higher orientation dispersion index in corpus callosum was associated with worse performance on timed walk test (P = 0.009, B = 0.01, 99% confidence interval = 0.0001 to 0.02), independent of brain and lesion volumes. Higher total sodium concentration in left frontal middle gyrus was associated with higher disability on Expanded Disability Status Scale (rs = 0.5, P = 0.005). Increased axonal dispersion was found in normal-appearing white matter, particularly corpus callosum, where there was also axonal degeneration and total sodium accumulation. The association between increased axonal dispersion in the corpus callosum and worse walking performance implies that morphological and metabolic alterations in this structure could mechanistically contribute to disability in multiple sclerosis. As brain volumes were neither altered nor related to disability in patients, our findings suggest that these two advanced MRI techniques are more sensitive at detecting clinically relevant pathology in early multiple sclerosis., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2021
- Full Text
- View/download PDF
37. Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis.
- Author
-
Johnson D, Ricciardi A, Brownlee W, Kanber B, Prados F, Collorone S, Kaden E, Toosy A, Alexander DC, Gandini Wheeler-Kingshott CAM, Ciccarelli O, and Grussu F
- Abstract
Background: Neurite orientation dispersion and density imaging (NODDI) and the spherical mean technique (SMT) are diffusion MRI methods providing metrics with sensitivity to similar characteristics of white matter microstructure. There has been limited comparison of changes in NODDI and SMT parameters due to multiple sclerosis (MS) pathology in clinical settings. Purpose: To compare group-wise differences between healthy controls and MS patients in NODDI and SMT metrics, investigating associations with disability and correlations with diffusion tensor imaging (DTI) metrics. Methods: Sixty three relapsing-remitting MS patients were compared to 28 healthy controls. NODDI and SMT metrics corresponding to intracellular volume fraction (v
in ), orientation dispersion (ODI and ODE), diffusivity (D) (SMT only) and isotropic volume fraction (viso ) (NODDI only) were calculated from diffusion MRI data, alongside DTI metrics (fractional anisotropy, FA; axial/mean/radial diffusivity, AD/MD/RD). Correlations between all pairs of MRI metrics were calculated in normal-appearing white matter (NAWM). Associations with expanded disability status scale (EDSS), controlling for age and gender, were evaluated. Patient-control differences were assessed voxel-by-voxel in MNI space controlling for age and gender at the 5% significance level, correcting for multiple comparisons. Spatial overlap of areas showing significant differences were compared using Dice coefficients. Results: NODDI and SMT show significant associations with EDSS (standardised beta coefficient -0.34 in NAWM and -0.37 in lesions for NODDI vin ; 0.38 and -0.31 for SMT ODE and vin in lesions; p < 0.05). Significant correlations in NAWM are observed between DTI and NODDI/SMT metrics. NODDI vin and SMT vin strongly correlated ( r = 0.72, p < 0.05), likewise NODDI ODI and SMT ODE ( r = -0.80, p < 0.05). All DTI, NODDI and SMT metrics detect widespread differences between patients and controls in NAWM (12.57% and 11.90% of MNI brain mask for SMT and NODDI vin , Dice overlap of 0.42). Data Conclusion: SMT and NODDI detect significant differences in white matter microstructure between MS patients and controls, concurring on the direction of these changes, providing consistent descriptors of tissue microstructure that correlate with disability and show alterations beyond focal damage. Our study suggests that NODDI and SMT may play a role in monitoring MS in clinical trials and practice., Competing Interests: FG is employed by the Vall d'Hebron Institute of Oncology (Barcelona, Spain) in a study funded by AstraZeneca (PREdICT). AstraZeneca was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Johnson, Ricciardi, Brownlee, Kanber, Prados, Collorone, Kaden, Toosy, Alexander, Gandini Wheeler-Kingshott, Ciccarelli and Grussu.)- Published
- 2021
- Full Text
- View/download PDF
38. Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI.
- Author
-
Tanno R, Worrall DE, Kaden E, Ghosh A, Grussu F, Bizzi A, Sotiropoulos SN, Criminisi A, and Alexander DC
- Subjects
- Diffusion Tensor Imaging, Humans, Image Processing, Computer-Assisted, Brain diagnostic imaging, Deep Learning, Diffusion Magnetic Resonance Imaging methods, Image Enhancement methods, Neuroimaging methods, Uncertainty
- Abstract
Deep learning (DL) has shown great potential in medical image enhancement problems, such as super-resolution or image synthesis. However, to date, most existing approaches are based on deterministic models, neglecting the presence of different sources of uncertainty in such problems. Here we introduce methods to characterise different components of uncertainty, and demonstrate the ideas using diffusion MRI super-resolution. Specifically, we propose to account for intrinsic uncertainty through a heteroscedastic noise model and for parameter uncertainty through approximate Bayesian inference, and integrate the two to quantify predictive uncertainty over the output image. Moreover, we introduce a method to propagate the predictive uncertainty on a multi-channelled image to derived scalar parameters, and separately quantify the effects of intrinsic and parameter uncertainty therein. The methods are evaluated for super-resolution of two different signal representations of diffusion MR images-Diffusion Tensor images and Mean Apparent Propagator MRI-and their derived quantities such as mean diffusivity and fractional anisotropy, on multiple datasets of both healthy and pathological human brains. Results highlight three key potential benefits of modelling uncertainty for improving the safety of DL-based image enhancement systems. Firstly, modelling uncertainty improves the predictive performance even when test data departs from training data ("out-of-distribution" datasets). Secondly, the predictive uncertainty highly correlates with reconstruction errors, and is therefore capable of detecting predictive "failures". Results on both healthy subjects and patients with brain glioma or multiple sclerosis demonstrate that such an uncertainty measure enables subject-specific and voxel-wise risk assessment of the super-resolved images that can be accounted for in subsequent analysis. Thirdly, we show that the method for decomposing predictive uncertainty into its independent sources provides high-level "explanations" for the model performance by separately quantifying how much uncertainty arises from the inherent difficulty of the task or the limited training examples. The introduced concepts of uncertainty modelling extend naturally to many other imaging modalities and data enhancement applications., (Crown Copyright © 2020. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
39. Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.
- Author
-
Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, Blumberg SB, Khoo CS, Palombo M, Kokkinos I, Alexander DC, Coll-Font J, Scherrer B, Warfield SK, Karayumak SC, Rathi Y, Koppers S, Weninger L, Ebert J, Merhof D, Moyer D, Pietsch M, Christiaens D, Gomes Teixeira RA, Tournier JD, Schilling KG, Huo Y, Nath V, Hansen C, Blaber J, Landman BA, Zhylka A, Pluim JPW, Parker G, Rudrapatna U, Evans J, Charron C, Jones DK, and Tax CMW
- Subjects
- Adult, Diffusion Magnetic Resonance Imaging instrumentation, Diffusion Magnetic Resonance Imaging standards, Humans, Image Processing, Computer-Assisted standards, Neuroimaging instrumentation, Neuroimaging standards, Regression Analysis, Algorithms, Brain diagnostic imaging, Deep Learning, Diffusion Magnetic Resonance Imaging methods, Image Processing, Computer-Assisted methods, Neuroimaging methods
- Abstract
Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies., (Copyright © 2020. Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF
40. Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: A NODDI study.
- Author
-
Collorone S, Cawley N, Grussu F, Prados F, Tona F, Calvi A, Kanber B, Schneider T, Kipp L, Zhang H, Alexander DC, Thompson AJ, Toosy A, Wheeler-Kingshott CAG, and Ciccarelli O
- Subjects
- Brain diagnostic imaging, Humans, Neurites, Spinal Cord, Cervical Cord diagnostic imaging, Multiple Sclerosis, Multiple Sclerosis, Relapsing-Remitting diagnostic imaging
- Abstract
Background: Multiple sclerosis (MS) affects both brain and spinal cord. However, studies of the neuraxis with advanced magnetic resonance imaging (MRI) are rare because of long acquisition times. We investigated neurodegeneration in MS brain and cervical spinal cord using neurite orientation dispersion and density imaging (NODDI)., Objective: The aim of this study was to investigate possible alterations, and their clinical relevance, in neurite morphology along the brain and cervical spinal cord of relapsing-remitting MS (RRMS) patients., Methods: In total, 28 RRMS patients and 20 healthy controls (HCs) underwent brain and spinal cord NODDI at 3T. Physical and cognitive disability was assessed. Individual maps of orientation dispersion index (ODI) and neurite density index (NDI) in brain and spinal cord were obtained. We examined differences in NODDI measures between groups and the relationships between NODDI metrics and clinical scores using linear regression models adjusted for age, sex and brain tissue volumes or cord cross-sectional area (CSA)., Results: Patients showed lower NDI in the brain normal-appearing white matter (WM) and spinal cord WM than HCs. In patients, a lower NDI in the spinal cord WM was associated with higher disability., Conclusion: Reduced neurite density occurs in the neuraxis but, especially when affecting the spinal cord, it may represent a mechanism of disability in MS.
- Published
- 2020
- Full Text
- View/download PDF
41. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising.
- Author
-
Grussu F, Battiston M, Veraart J, Schneider T, Cohen-Adad J, Shepherd TM, Alexander DC, Fieremans E, Novikov DS, and Gandini Wheeler-Kingshott CAM
- Subjects
- Algorithms, Computer Simulation, Diffusion Tensor Imaging, Echo-Planar Imaging instrumentation, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Myelin Sheath pathology, Principal Component Analysis, Signal-To-Noise Ratio, Echo-Planar Imaging methods, Spinal Cord diagnostic imaging
- Abstract
Multi-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early microstructural damage in neurological disorders. It is usually performed in vivo by combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to physiological noise. This ultimately hinders joint multi-contrast modelling and makes the geometric correspondence of parametric maps challenging. We propose an approach to overcome these limitations, by implementing state-of-the-art microstructural MRI of the spinal cord with a unified signal readout in vivo (i.e. with matched spatial encoding parameters across a range of imaging contrasts). We base our acquisition on single-shot echo planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma). Importantly, the unified acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality enhancement via multi-contrast image denoising methods. As a proof-of-concept, here we provide a demonstration with one such method, known as Marchenko-Pastur (MP) Principal Component Analysis (PCA) denoising. MP-PCA is a singular value (SV) decomposition truncation approach that relies on redundant acquisitions, i.e. such that the number of measurements is large compared to the number of components that are maintained in the truncated SV decomposition. Here we used in vivo and synthetic data to test whether a unified readout enables more efficient MP-PCA denoising of less redundant acquisitions, since these can be denoised jointly with more redundant ones. We demonstrate that a unified readout provides robust multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by up to 17% for mean kurtosis, 8% for bound pool fraction (myelin-sensitive), and 13% for T1, while enabling more efficient denoising of modalities limited in redundancy (e.g. relaxometry). In conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions, whose quality benefits from multi-contrast denoising methods such as MP-PCA., Competing Interests: Declaration of competing interests TS is an employee of Philips UK. EF, JV, DSN and NYU School of Medicine, are co-inventors in the MP-PCA technology related to this research; a patent application has been filed and is pending. EF, JV, DSN, and TMS are shareholders and hold advisory roles at Microstructure Imaging, Inc., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
42. A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis.
- Author
-
Tur C, Grussu F, Prados F, Charalambous T, Collorone S, Kanber B, Cawley N, Altmann DR, Ourselin S, Barkhof F, Clayden JD, Toosy AT, Wheeler-Kingshott CAG, and Ciccarelli O
- Subjects
- Adult, Cognitive Dysfunction etiology, Cognitive Dysfunction pathology, Female, Gray Matter pathology, Humans, Male, Middle Aged, Multiple Sclerosis complications, Multiple Sclerosis pathology, Nerve Net pathology, Retrospective Studies, White Matter pathology, Cognitive Dysfunction diagnostic imaging, Diffusion Tensor Imaging methods, Gray Matter diagnostic imaging, Multiple Sclerosis diagnostic imaging, Nerve Net diagnostic imaging, White Matter diagnostic imaging
- Abstract
Background: The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely been investigated., Objective: To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-derived connectivity metrics can differentiate patients from controls, correlate with clinical measures, and perform better than metrics obtained with conventional single-shell protocols., Methods: Nineteen patients within 3 months from the CIS and 12 healthy controls underwent anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and used to obtain network metrics. These were also calculated using a conventional single-shell diffusion protocol. Through linear regression, we obtained effect sizes and standardised regression coefficients., Results: Patients had lower mean nodal strength ( p = 0.003) and greater network modularity than controls ( p = 0.045). Greater modularity was associated with worse cognitive performance in patients, even after accounting for lesion load ( p = 0.002). Multi-shell-derived metrics outperformed single-shell-derived ones., Conclusion: Connectivity-based nodal strength and network modularity are abnormal in the CIS. Furthermore, the increased network modularity observed in patients, indicating microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging can detect potentially relevant network changes in early MS.
- Published
- 2020
- Full Text
- View/download PDF
43. Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy.
- Author
-
Prados F, Moccia M, Johnson A, Yiannakas M, Grussu F, Cardoso MJ, Ciccarelli O, Ourselin S, Barkhof F, and Wheeler-Kingshott C
- Subjects
- Adult, Atrophy pathology, Double-Blind Method, Female, Humans, Image Interpretation, Computer-Assisted standards, Longitudinal Studies, Magnetic Resonance Imaging standards, Male, Multiple Sclerosis pathology, Neuroimaging standards, Spinal Cord pathology, Disease Progression, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging methods, Multiple Sclerosis diagnostic imaging, Neuroimaging methods, Spinal Cord diagnostic imaging
- Abstract
Spinal cord atrophy measurements obtained from structural magnetic resonance imaging (MRI) are associated with disability in many neurological diseases and serve as in vivo biomarkers of neurodegeneration. Longitudinal spinal cord atrophy rate is commonly determined from the numerical difference between two volumes (based on 3D surface fitting) or two cross-sectional areas (CSA, based on 2D edge detection) obtained at different time-points. Being an indirect measure, atrophy rates are susceptible to variable segmentation errors at the edge of the spinal cord. To overcome those limitations, we developed a new registration-based pipeline that measures atrophy rates directly. We based our approach on the generalised boundary shift integral (GBSI) method, which registers 2 scans and uses a probabilistic XOR mask over the edge of the spinal cord, thereby measuring atrophy more accurately than segmentation-based techniques. Using a large cohort of longitudinal spinal cord images (610 subjects with multiple sclerosis from a multi-centre trial and 52 healthy controls), we demonstrated that GBSI is a sensitive, quantitative and objective measure of longitudinal spinal cord volume change. The GBSI pipeline is repeatable, reproducible, and provides more precise measurements of longitudinal spinal cord atrophy than segmentation-based methods in longitudinal spinal cord atrophy studies., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
44. Fast bound pool fraction mapping via steady-state magnetization transfer saturation using single-shot EPI.
- Author
-
Battiston M, Schneider T, Grussu F, Yiannakas MC, Prados F, De Angelis F, Gandini Wheeler-Kingshott CAM, and Samson RS
- Subjects
- Brain diagnostic imaging, Humans, Multiple Sclerosis diagnostic imaging, Myelin Sheath chemistry, Echo-Planar Imaging methods, Image Interpretation, Computer-Assisted methods
- Abstract
Purpose: To enable clinical applications of quantitative magnetization transfer (qMT) imaging by developing a fast method to map one of its fundamental model parameters, the bound pool fraction (BPF), in the human brain., Theory and Methods: The theory of steady-state MT in the fast-exchange approximation is used to provide measurements of BPF, and bound pool transverse relaxation time ( T 2 B ). A sequence that allows sampling of the signal during steady-state MT saturation is used to perform BPF mapping with a 10-min-long fully echo planar imaging-based MRI protocol, including inversion recovery T
1 mapping and B1 error mapping. The approach is applied in 6 healthy subjects and 1 multiple sclerosis patient, and validated against a single-slice full qMT reference acquisition., Results: BPF measurements are in agreement with literature values using off-resonance MT, with average BPF of 0.114(0.100-0.128) in white matter and 0.068(0.054-0.085) in gray matter. Median voxel-wise percentage error compared with standard single slice qMT is 4.6%. Slope and intercept of linear regression between new and reference BPF are 0.83(0.81-0.85) and 0.013(0.11-0.16). Bland-Altman plot mean bias is 0.005. In the multiple sclerosis case, the BPF is sensitive to pathological changes in lesions., Conclusion: The method developed provides accurate BPF estimates and enables shorter scan time compared with currently available approaches, demonstrating the potential of bringing myelin sensitive measurement closer to the clinic., (© 2019 International Society for Magnetic Resonance in Medicine.)- Published
- 2019
- Full Text
- View/download PDF
45. Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms.
- Author
-
Tax CM, Grussu F, Kaden E, Ning L, Rudrapatna U, John Evans C, St-Jean S, Leemans A, Koppers S, Merhof D, Ghosh A, Tanno R, Alexander DC, Zappalà S, Charron C, Kusmia S, Linden DE, Jones DK, and Veraart J
- Subjects
- Adult, Benchmarking standards, Brain Mapping standards, Databases as Topic, Diffusion Magnetic Resonance Imaging methods, Female, Humans, Image Processing, Computer-Assisted standards, Male, Young Adult, Algorithms, Benchmarking methods, Brain Mapping methods, Diffusion Magnetic Resonance Imaging standards, Image Processing, Computer-Assisted methods
- Abstract
Diffusion MRI is being used increasingly in studies of the brain and other parts of the body for its ability to provide quantitative measures that are sensitive to changes in tissue microstructure. However, inter-scanner and inter-protocol differences are known to induce significant measurement variability, which in turn jeopardises the ability to obtain 'truly quantitative measures' and challenges the reliable combination of different datasets. Combining datasets from different scanners and/or acquired at different time points could dramatically increase the statistical power of clinical studies, and facilitate multi-centre research. Even though careful harmonisation of acquisition parameters can reduce variability, inter-protocol differences become almost inevitable with improvements in hardware and sequence design over time, even within a site. In this work, we present a benchmark diffusion MRI database of the same subjects acquired on three distinct scanners with different maximum gradient strength (40, 80, and 300 mT/m), and with 'standard' and 'state-of-the-art' protocols, where the latter have higher spatial and angular resolution. The dataset serves as a useful testbed for method development in cross-scanner/cross-protocol diffusion MRI harmonisation and quality enhancement. Using the database, we compare the performance of five different methods for estimating mappings between the scanners and protocols. The results show that cross-scanner harmonisation of single-shell diffusion data sets can reduce the variability between scanners, and highlight the promises and shortcomings of today's data harmonisation techniques., (Copyright © 2019. Published by Elsevier Inc.)
- Published
- 2019
- Full Text
- View/download PDF
46. Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord.
- Author
-
Grussu F, Ianuş A, Tur C, Prados F, Schneider T, Kaden E, Ourselin S, Drobnjak I, Zhang H, Alexander DC, and Gandini Wheeler-Kingshott CAM
- Subjects
- Adult, Algorithms, Brain diagnostic imaging, Computer Simulation, Female, Healthy Volunteers, Humans, Image Processing, Computer-Assisted methods, Male, Monte Carlo Method, Time Factors, Axons pathology, Diffusion Magnetic Resonance Imaging, Spinal Cord diagnostic imaging
- Abstract
Purpose: Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain., Methods: We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm
-2 ; b = 2855 s mm-2 ), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers., Results: Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent., Conclusions: Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as "stick" (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons., (© 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.)- Published
- 2019
- Full Text
- View/download PDF
47. Structural cortical network reorganization associated with early conversion to multiple sclerosis.
- Author
-
Tur C, Eshaghi A, Altmann DR, Jenkins TM, Prados F, Grussu F, Charalambous T, Schmidt A, Ourselin S, Clayden JD, Wheeler-Kingshott CAMG, Thompson AJ, Ciccarelli O, and Toosy AT
- Subjects
- Adult, Atrophy diagnostic imaging, Atrophy pathology, Disease Progression, Female, Follow-Up Studies, Gray Matter diagnostic imaging, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Multiple Sclerosis diagnostic imaging, Nerve Net diagnostic imaging, Connectome, Gray Matter pathology, Multiple Sclerosis pathology, Nerve Net pathology
- Abstract
Brain structural covariance networks (SCNs) based on pairwise statistical associations of cortical thickness data across brain areas reflect underlying physical and functional connections between them. SCNs capture the complexity of human brain cortex structure and are disrupted in neurodegenerative conditions. However, the longitudinal assessment of SCN dynamics has not yet been explored, despite its potential to unveil mechanisms underlying neurodegeneration. Here, we evaluated the changes of SCNs over 12 months in patients with a first inflammatory-demyelinating attack of the Central Nervous System and assessed their clinical relevance by comparing SCN dynamics of patients with and without conversion to multiple sclerosis (MS) over one year. All subjects underwent clinical and brain MRI assessments over one year. Brain cortical thicknesses for each subject and time point were used to obtain group-level between-area correlation matrices from which nodal connectivity metrics were obtained. Robust bootstrap-based statistical approaches (allowing sampling with replacement) assessed the significance of longitudinal changes. Patients who converted to MS exhibited significantly greater network connectivity at baseline than non-converters (p = 0.02) and a subsequent connectivity loss over time (p = 0.001-0.02), not observed in non-converters' network. These findings suggest SCN analysis is sensitive to brain tissue changes in early MS, reflecting clinically relevant aspects of the condition. However, this is preliminary work, indicated by the low sample sizes, and its results and conclusions should be treated with caution and confirmed with larger cohorts.
- Published
- 2018
- Full Text
- View/download PDF
48. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo.
- Author
-
Battiston M, Grussu F, Ianus A, Schneider T, Prados F, Fairney J, Ourselin S, Alexander DC, Cercignani M, Gandini Wheeler-Kingshott CAM, and Samson RS
- Subjects
- Adult, Algorithms, Cervical Cord chemistry, Female, Humans, Male, Myelin Sheath chemistry, Cervical Cord diagnostic imaging, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging methods, Signal Processing, Computer-Assisted
- Abstract
Purpose: To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time., Methods: A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k
FB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects., Results: Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB ., Conclusion: The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited., (© 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.)- Published
- 2018
- Full Text
- View/download PDF
49. Fast and reproducible in vivo T 1 mapping of the human cervical spinal cord.
- Author
-
Battiston M, Schneider T, Prados F, Grussu F, Yiannakas MC, Ourselin S, Gandini Wheeler-Kingshott CAM, and Samson RS
- Subjects
- Adult, Algorithms, Brain diagnostic imaging, Female, Healthy Volunteers, Humans, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Male, Motion, Phantoms, Imaging, Reproducibility of Results, Signal Processing, Computer-Assisted, Cervical Cord diagnostic imaging, Echo-Planar Imaging methods
- Abstract
Purpose: To develop a fast and robust method for measuring T
1 in the whole cervical spinal cord in vivo, and to assess its reproducibility., Methods: A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7 min. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects., Results: Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficient = 0.89 (P value < 0.01); mean difference = 2 ms, 95% confidence interval ± 20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficient = 0.88 (P value < 0.01, confidence interval 0.71-0.95))., Conclusions: T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med 79:2142-2148, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited., (© 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.)- Published
- 2018
- Full Text
- View/download PDF
50. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?
- Author
-
Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianuş A, Yiannakas MC, Newcombe J, Zhang H, Alexander DC, DeLuca GC, and Gandini Wheeler-Kingshott CAM
- Abstract
Objective: Conventional magnetic resonance imaging (MRI) of the multiple sclerosis spinal cord is limited by low specificity regarding the underlying pathological processes, and new MRI metrics assessing microscopic damage are required. We aim to show for the first time that neurite orientation dispersion (i.e., variability in axon/dendrite orientations) is a new biomarker that uncovers previously undetected layers of complexity of multiple sclerosis spinal cord pathology. Also, we validate against histology a clinically viable MRI technique for dispersion measurement ( neurite orientation dispersion and density imaging, NODDI), to demonstrate the strong potential of the new marker., Methods: We related quantitative metrics from histology and MRI in four post mortem spinal cord specimens (two controls; two progressive multiple sclerosis cases). The samples were scanned at high field, obtaining maps of neurite density and orientation dispersion from NODDI and routine diffusion tensor imaging (DTI) indices. Histological procedures provided markers of astrocyte, microglia, myelin and neurofilament density, as well as neurite dispersion., Results: We report from both NODDI and histology a trend toward lower neurite dispersion in demyelinated lesions, indicative of reduced neurite architecture complexity. Also, we provide unequivocal evidence that NODDI-derived dispersion matches its histological counterpart ( P < 0.001), while DTI metrics are less specific and influenced by several biophysical substrates., Interpretation: Neurite orientation dispersion detects a previously undescribed and potentially relevant layer of microstructural complexity of multiple sclerosis spinal cord pathology. Clinically feasible techniques such as NODDI may play a key role in clinical trial and practice settings, as they provide histologically meaningful dispersion indices.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.