1. A differential proteomics study of cerebrospinal fluid from individuals with Niemann-Pick disease, Type C1.
- Author
-
Li W, Pergande MR, Crutchfield CA, Searle BC, Backlund PS, Picache JA, Burkert K, Yanjanin-Farhat NM, Blank PS, Toth CL, Wassif CA, Porter FD, and Cologna SM
- Subjects
- Mice, Animals, Proteomics methods, Proteins, Niemann-Pick Disease, Type C drug therapy, Niemann-Pick Disease, Type C metabolism, Neurodegenerative Diseases
- Abstract
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity., (© 2022 The Authors. Proteomics published by Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF