32 results on '"Bellusci L"'
Search Results
2. Evolution of the Antigenic Landscape in Children and Young Adults with COVID-19 and MIS-C.
- Author
-
Bellusci L, Grubbs G, Sait S, Herbst KW, Salazar JC, Khurana S, and The Connecticut Children's Covid Collaborative
- Abstract
There is minimal knowledge regarding the durability of neutralization capacity and level of binding antibody generated against the highly transmissible circulating Omicron subvariants following SARS-CoV-2 infection in children with acute COVID-19 and those diagnosed with multisystem inflammatory syndrome in children (MIS-C) in the absence of vaccination. In this study, SARS-CoV-2 neutralization titers against the ancestral strain (WA1) and Omicron sublineages were evaluated in unvaccinated children admitted for COVID-19 ( n = 32) and MIS-C ( n = 32) at the time of hospitalization (baseline) and at six to eight weeks post-discharge (follow-up) between 1 April 2020, and 1 September 2022. In addition, antibody binding to the spike receptor binding domain (RBD) from WA1, BA.1, BA.2.75, and BA.4/BA.5 was determined using surface plasmon resonance (SPR). At baseline, the children with MIS-C demonstrated two-fold to three-fold higher binding and neutralizing antibodies against ancestral WA1 compared to those with COVID-19. Importantly, in children with COVID-19, the virus neutralization titers against the Omicron subvariants at six to eight weeks post-discharge reached the same level as those with MIS-C had at baseline but were higher than titers at 6-8 weeks post-discharge for MIS-C cases. Cross-neutralization capacity against recently emerged Omicron BQ.1, BQ.1.1, and XBB.1 variants was very low in children with either COVID-19 or MIS-C at all time points. These findings about post-infection immunity in children with either COVID-19 or MIS-C suggest the need for vaccinations in children with prior COVID-19 or MIS-C to provide effective protection from emerging and circulating SARS-CoV-2 variants.
- Published
- 2024
- Full Text
- View/download PDF
3. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans.
- Author
-
Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, and Pulendran B
- Subjects
- Adult, Humans, Memory B Cells, COVID-19 Vaccines, Antibodies, Viral, Drug Combinations, Influenza Vaccines, Influenza, Human, COVID-19 prevention & control, Polysorbates, Squalene, alpha-Tocopherol
- Abstract
Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4
+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.- Published
- 2024
- Full Text
- View/download PDF
4. Neutralization of SARS-CoV-2 Omicron BQ.1, BQ.1.1 and XBB.1 variants following SARS-CoV-2 infection or vaccination in children.
- Author
-
Bellusci L, Grubbs G, Sait S, Yonker LM, Randolph AG, Novak T, Kobayashi T, and Khurana S
- Subjects
- Adolescent, Child, Humans, Child, Preschool, COVID-19 Vaccines, BNT162 Vaccine, Vaccination, Antibodies, Neutralizing, Broadly Neutralizing Antibodies, RNA, Messenger, Antibodies, Viral, SARS-CoV-2 genetics, COVID-19 prevention & control
- Abstract
Emergence of highly transmissible Omicron subvariants led to increased SARS-CoV-2 infection and disease in children. However, minimal knowledge exists regarding the neutralization capacity against circulating Omicron BA.4/BA.5, BA.2.75, BQ.1, BQ.1.1 and XBB.1 subvariants following SARS-CoV-2 vaccination in children versus during acute or convalescent COVID-19, or versus multisystem inflammatory syndrome (MIS-C). Here, we evaluate virus-neutralizing capacity against SARS-CoV-2 variants in 151 age-stratified children ( <5, 5-11, 12-21 years old) hospitalized with acute severe COVID-19 or MIS-C or convalescent mild (outpatient) infection compared with 62 age-stratified vaccinated children. An age-associated effect on neutralizing antibodies is observed against SARS-CoV-2 following acute COVID-19 or vaccination. The primary series BNT162b2 mRNA vaccinated adolescents show higher vaccine-homologous WA-1 neutralizing titers compared with <12 years vaccinated children. Post-infection antibodies did not neutralize BQ.1, BQ.1.1 and XBB.1 subvariants. In contrast, monovalent mRNA vaccination induces more cross-neutralizing antibodies in young children <5 years against BQ.1, BQ.1.1 and XBB.1 variants compared with ≥5 years old children. Our study demonstrates that in children, infection and monovalent vaccination-induced neutralization activity is low against BQ.1, BQ.1.1 and XBB.1 variants. These findings suggest a need for improved SARS-CoV-2 vaccines to induce durable, more cross-reactive neutralizing antibodies to provide effective protection against emerging variants in children., (© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2023
- Full Text
- View/download PDF
5. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth.
- Author
-
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, and Pulendran B
- Subjects
- Adult, Child, Infant, Humans, Child, Preschool, Multiomics, Cytokines metabolism, Interferon-alpha, Immunity, Mucosal, SARS-CoV-2 metabolism, COVID-19
- Abstract
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life., Competing Interests: Declaration of interests B.P. serves on the External Immunology Board of GSK and on the Scientific Advisory Board of Sanofi, Medicago, Boehringer Ingelheim, Icosavax, and EdJen. F.W. is a consultant for Gilead. A.S. is a consultant for Gritstone Bio, Flow Pharma, Moderna, AstraZeneca, Qiagen, Fortress, Gilead, Sanofi, Merck, RiverVest, MedaCorp, Turnstone, NA Vaccine Institute, Emervax, Gerson Lehrman Group and Guggenheim. LJI has filed for patent protection for various aspects of T cell epitope and vaccine design work., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
6. Comparison of SARS-CoV-2 Hyperimmune Immunoglobulins Following Infection Plus Vaccination vs Infection.
- Author
-
Bellusci L, Golding H, and Khurana S
- Subjects
- Humans, Immunoglobulins therapeutic use, SARS-CoV-2, COVID-19
- Published
- 2023
- Full Text
- View/download PDF
7. Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine.
- Author
-
Feng Y, Yuan M, Powers JM, Hu M, Munt JE, Arunachalam PS, Leist SR, Bellusci L, Kim J, Sprouse KR, Adams LE, Sundaramurthy S, Zhu X, Shirreff LM, Mallory ML, Scobey TD, Moreno A, O'Hagan DT, Kleanthous H, Villinger FJ, Veesler D, King NP, Suthar MS, Khurana S, Baric RS, Wilson IA, and Pulendran B
- Subjects
- Animals, Humans, Mice, Broadly Neutralizing Antibodies, COVID-19 Vaccines, Macaca, SARS-CoV-2, Immunization, Vaccination, Antibodies, Monoclonal, Antibodies, Viral, Antibodies, Neutralizing, Severe acute respiratory syndrome-related coronavirus, COVID-19 prevention & control
- Abstract
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.
- Published
- 2023
- Full Text
- View/download PDF
8. Therapeutic potential of convalescent plasma and hyperimmune immunoglobulins against SARS-CoV-2 BQ.1, BQ.1.1, and XBB variants.
- Author
-
Bellusci L, Golding H, and Khurana S
- Subjects
- Humans, COVID-19 Serotherapy, Immunoglobulins, Immunization, Passive, Antibodies, Viral therapeutic use, Antibodies, Neutralizing, SARS-CoV-2, COVID-19 therapy
- Published
- 2023
- Full Text
- View/download PDF
9. Systems biological assessment of the temporal dynamics of immunity to a viral infection in the first weeks and months of life.
- Author
-
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff L, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, and Pulendran B
- Abstract
The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life., Competing Interests: Declaration of Interest Alessandro Sette is a consultant for Gritstone Bio, Flow Pharma, Moderna, AstraZeneca, Qiagen, Fortress, Gilead, Sanofi, Merck, RiverVest, MedaCorp, Turnstone, NA Vaccine Institute, Emervax, Gerson Lehrman Group and Guggenheim. LJI has filed for patent protection for various aspects of T cell epitope and vaccine design work.
- Published
- 2023
- Full Text
- View/download PDF
10. Extremely potent pan-sarbecovirus neutralizing antibodies generated by immunization of macaques with an AS03-adjuvanted monovalent subunit vaccine against SARS-CoV-2.
- Author
-
Feng Y, Yuan M, Powers JM, Hu M, Munt JE, Arunachalam PS, Leist SR, Bellusci L, Adams LE, Sundaramurthy S, Shirreff LM, Mallory ML, Scooby TD, Moreno A, O'Hagan DT, Kleanthous H, Villinger FJ, Veesler D, King NP, Suthar MS, Khurana S, Baric RS, Wilson IA, and Pulendran B
- Abstract
The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies., One Sentence Summary: Extremely potent pan-sarbecovirus neutralizing antibodies.
- Published
- 2023
- Full Text
- View/download PDF
11. Durability of Immunity Is Low Against Severe Acute Respiratory Syndrome Coronavirus 2 Omicron BA.1, BA.2, and BA.3 Variants After Second and Third Vaccinations in Children and Young Adults With Inflammatory Bowel Disease Receiving Biologics.
- Author
-
Bellusci L, Zahra FT, Hopkins DE, Salazar JC, Hyams JS, and Khurana S
- Subjects
- Humans, Young Adult, Child, SARS-CoV-2, Vaccination, Chronic Disease, Biological Products adverse effects, COVID-19 prevention & control, Inflammatory Bowel Diseases drug therapy
- Published
- 2022
- Full Text
- View/download PDF
12. Comprehensive profiling of the human viral exposome in households containing an at-risk child with mitochondrial disease during the 2020-2021 COVID-19 pandemic.
- Author
-
Gordon-Lipkin EM, Marcum CS, Kruk S, Thompson E, Kelly SEM, Kalish H, Bellusci L, Khurana S, Sadtler K, and McGuire PJ
- Subjects
- United States, Child, Humans, SARS-CoV-2, Pandemics, COVID-19 epidemiology, Exposome, Virus Diseases, Mitochondrial Diseases
- Abstract
Background: Viral infection is a major cause of morbidity in children with mitochondrial disease (MtD). As a result, families with children with MtD are highly adherent to risk mitigation behaviours (RMBs) advised by the Centers for Disease Control and Prevention during the COVID-19 pandemic that can modulate infection risk., Methods: Deep serologic phenotyping of viral infections was performed via home-based sampling by combining SARS-CoV-2 serologic testing and phage display immunoprecipitation and sequencing. Samples were collected approximately 1 year apart (October 2020 to April 2021 and October 2021 to March 2022) on households containing a child with MtD., Results: In contrast to our first collection in 2020-2021, SARS-CoV-2 antibody profiles for all participants in 2021-2022 were marked by greater isotype diversity and the appearance of neutralizing antibodies. Besides SARS-CoV-2, households (N = 15) were exposed to >38 different respiratory and gastrointestinal viruses during the study, averaging five viral infections per child with MtD. Regarding clinical outcomes, children with MtD (N = 17) experienced 34 episodes of illness resulting in 6 hospitalizations, with some children experiencing multiple episodes. Neurologic events following illness were recorded in five patients. Infections were identified via clinical testing in only seven cases. Viral exposome profiles were consistent with clinical testing and even identified infections not captured by clinical testing., Conclusions: Despite reported adherence to RMBs during the COVID-19 pandemic by families with a child with MtD, viral infection was pervasive. Not all infections resulted in illness in the child with MtD, suggesting that some were subclinical or asymptomatic. However, selected children with MtD did experience neurologic events. Our studies emphasize that viral infections are inexorable, emphasizing the need for further understanding of host-pathogen interactions through broad serologic surveillance., (© 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.)
- Published
- 2022
- Full Text
- View/download PDF
13. An antibody from single human V H -rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion.
- Author
-
Luo S, Zhang J, Kreutzberger AJB, Eaton A, Edwards RJ, Jing C, Dai HQ, Sempowski GD, Cronin K, Parks R, Ye AY, Mansouri K, Barr M, Pishesha N, Williams AC, Vieira Francisco L, Saminathan A, Peng H, Batra H, Bellusci L, Khurana S, Alam SM, Montefiori DC, Saunders KO, Tian M, Ploegh H, Kirchhausen T, Chen B, Haynes BF, and Alt FW
- Subjects
- Humans, Mice, Animals, Spike Glycoprotein, Coronavirus genetics, Angiotensin-Converting Enzyme 2, Membrane Fusion, Antibodies, Viral, Antibodies, Neutralizing, Epitopes, Receptors, Antigen, B-Cell, SARS-CoV-2, COVID-19
- Abstract
SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human V
H 1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH 1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH 1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.- Published
- 2022
- Full Text
- View/download PDF
14. Author Correction: Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C.
- Author
-
Tang J, Novak T, Hecker J, Grubbs G, Zahra FT, Bellusci L, Pourhashemi S, Chou J, Moffitt K, Halasa NB, Schwartz SP, Walker TC, Tarquinio KM, Zinter MS, Staat MA, Gertz SJ, Cvijanovich NZ, Schuster JE, Loftis LL, Coates BM, Mack EH, Irby K, Fitzgerald JC, Rowan CM, Kong M, Flori HR, Maddux AB, Shein SL, Crandall H, Hume JR, Hobbs CV, Tremoulet AH, Shimizu C, Burns JC, Chen SR, Moon HK, Lange C, Randolph AG, and Khurana S
- Published
- 2022
- Full Text
- View/download PDF
15. Antibody affinity and cross-variant neutralization of SARS-CoV-2 Omicron BA.1, BA.2 and BA.3 following third mRNA vaccination.
- Author
-
Bellusci L, Grubbs G, Zahra FT, Forgacs D, Golding H, Ross TM, and Khurana S
- Subjects
- Adult, Antibodies, Neutralizing, Antibodies, Viral, Antibody Affinity, Humans, Neutralization Tests, RNA, Messenger, Vaccination, COVID-19 prevention & control, SARS-CoV-2 genetics
- Abstract
There is limited knowledge on durability of neutralization capacity and antibody affinity maturation generated following two versus three doses of SARS-CoV-2 mRNA vaccines in naïve versus convalescent individuals (hybrid immunity) against the highly transmissible Omicron BA.1, BA.2 and BA.3 subvariants. Virus neutralization titers against the vaccine-homologous strain (WA1) and Omicron sublineages are measured in a pseudovirus neutralization assay (PsVNA). In addition, antibody binding and antibody affinity against spike proteins from WA1, BA.1, and BA.2 is determined using surface plasmon resonance (SPR). The convalescent individuals who after SARS-CoV-2 infection got vaccinated develop hybrid immunity that shows broader neutralization activity and cross-reactive antibody affinity maturation against the Omicron BA.1 and BA.2 after either second or third vaccination compared with naïve individuals. Neutralization activity correlates with antibody affinity against Omicron subvariants BA.1 and BA.2 spikes. Importantly, at four months post-third vaccination the neutralization activity and antibody affinity against the Omicron subvariants is maintained and trended higher for the individuals with hybrid immunity compared with naïve adults. These findings about hybrid immunity resulting in superior immune kinetics, breadth, and durable high affinity antibodies support the need for booster vaccinations to provide effective protection from emerging SARS-CoV-2 variants like the rapidly spreading Omicron subvariants., (© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2022
- Full Text
- View/download PDF
16. Brainstem activation of GABA B receptors in the nucleus tractus solitarius increases gastric motility.
- Author
-
Bellusci L, Kim E, Garcia DuBar S, Gillis RA, Vicini S, and Sahibzada N
- Abstract
Background and Aim: Local GABAergic signaling in the dorsal vagal complex (DVC) is essential to control gastric function. While the inhibitory GABA
A receptor action on motility in the DVC is well-documented, the role of the GABAB receptor on gastric function is less well-established. Microinjection of baclofen, a selective GABAB receptor agonist, in the dorsal motor nucleus of the vagus (DMV) increases gastric tone and motility, while the effect on motility in the nucleus tractus solitarius (NTS) needs to be investigated. Previous in vitro studies showed that GABAB receptors exert a local inhibitory effect in unidentified NTS neurons. Since the NTS and DMV nuclei have differential control of gastric motility, we compared GABAB receptor activation in the NTS to that reported in the DMV. We microinjected baclofen unilaterally in the NTS while monitoring intragastric pressure and compared its action to optogenetic activation of somatostatin (SST) neurons in transgenic sst -Cre::channelrhodopsin-2 (ChR2) mice. We also performed patch-clamp recordings from SST and DMV neurons in brainstem slices from these mice., Methods: In vivo drug injections and optogenetic stimulation were performed in fasted urethane/α-chloralose anesthetized male mice. Gastric tone and motility were monitored by an intragastric balloon inserted in the antrum and inflated with warm water to provide a baseline intragastric pressure (IGP). Coronal brainstem slices were obtained from the sst -Cre::ChR2 mice for interrogation with optogenetics and pharmacology using electrophysiology., Results: The unilateral microinjection of baclofen into the NTS caused a robust increase in gastric tone and motility that was not affected by ipsilateral vagotomy. Optogenetic activation of SST neurons that followed baclofen effectively suppresses the gastric motility in vivo . In brain slices, baclofen suppressed spontaneous and light-activated inhibitory postsynaptic currents in SST and gastrointestinal-projection DMV neurons and produced outward currents., Conclusion: Our results show that GABAB receptors in the NTS strongly increase gastric tone and motility. Optogenetic stimulation in vivo and in vitro suggests that these receptors activated by baclofen suppress the glutamatergic sensory vagal afferents in the NTS and also inhibit the interneurons and the inhibitory neurons that project to the DMV, which, in turn, increase motility via a cholinergic excitatory pathway to the stomach., (Copyright © 2022 Bellusci, Kim, Garcia DuBar, Gillis, Vicini and Sahibzada.)- Published
- 2022
- Full Text
- View/download PDF
17. Neutralisation of circulating SARS-CoV-2 delta and omicron variants by convalescent plasma and SARS-CoV-2 hyperimmune intravenous human immunoglobulins for treatment of COVID-19.
- Author
-
Zahra FT, Bellusci L, Grubbs G, Golding H, and Khurana S
- Subjects
- Humans, Immunization, Passive, Immunoglobulins, COVID-19 Serotherapy, COVID-19 therapy, SARS-CoV-2
- Abstract
Competing Interests: Competing interests: None declared.
- Published
- 2022
- Full Text
- View/download PDF
18. Interactions between Brainstem Neurons That Regulate the Motility to the Stomach.
- Author
-
Bellusci L, Garcia DuBar SN, Kuah M, Castellano D, Muralidaran V, Jones E, Rozeboom AM, Gillis RA, Vicini S, and Sahibzada N
- Subjects
- Animals, Female, GABAergic Neurons physiology, Male, Mice, Neuropeptide Y pharmacology, Rats, Rats, Sprague-Dawley, Solitary Nucleus physiology, Vagus Nerve physiology, Brain Stem physiology, Stomach innervation
- Abstract
Activity in the dorsal vagal complex (DVC) is essential to gastric motility regulation. We and others have previously shown that this activity is greatly influenced by local GABAergic signaling, primarily because of somatostatin (SST)-expressing GABAergic neurons. To further understand the network dynamics associated with gastric motility control in the DVC, we focused on another neuron prominently distributed in this complex, neuropeptide-Y (NPY) neurons. However, the effect of these neurons on gastric motility remains unknown. Here, we investigate the anatomic and functional characteristics of the NPY neurons in the nucleus tractus solitarius (NTS) and their interactions with SST neurons using transgenic mice of both sexes. We sought to determine whether NPY neurons influence the activity of gastric-projecting neurons, synaptically interact with SST neurons, and affect end-organ function. Our results using combined neuroanatomy and optogenetic in vitro and in vivo show that NPY neurons are part of the gastric vagal circuit as they are trans-synaptically labeled by a viral tracer from the gastric antrum, are primarily excitatory as optogenetic activation of these neurons evoke EPSCs in gastric-antrum-projecting neurons, are functionally coupled to each other and reciprocally connected to SST neurons, whose stimulation has a potent inhibitory effect on the action potential firing of the NPY neurons, and affect gastric tone and motility as reflected by their robust optogenetic response in vivo. These findings indicate that interacting NPY and SST neurons are integral to the network that controls vagal transmission to the stomach. SIGNIFICANCE STATEMENT The brainstem neurons in the dorsal nuclear complex are essential for regulating vagus nerve activity that affects the stomach via tone and motility. Two distinct nonoverlapping populations of predominantly excitatory NPY neurons and predominantly inhibitory SST neurons form reciprocal connections with each other in the NTS and with premotor neurons in the dorsal motor nucleus of the vagus to control gastric mechanics. Light activation and inhibition of NTS NPY neurons increased and decreased gastric motility, respectively, whereas both activation and inhibition of NTS SST neurons enhanced gastric motility., (Copyright © 2022 the authors.)
- Published
- 2022
- Full Text
- View/download PDF
19. Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C.
- Author
-
Tang J, Novak T, Hecker J, Grubbs G, Zahra FT, Bellusci L, Pourhashemi S, Chou J, Moffitt K, Halasa NB, Schwartz SP, Walker TC, Tarquinio KM, Zinter MS, Staat MA, Gertz SJ, Cvijanovich NZ, Schuster JE, Loftis LL, Coates BM, Mack EH, Irby K, Fitzgerald JC, Rowan CM, Kong M, Flori HR, Maddux AB, Shein SL, Crandall H, Hume JR, Hobbs CV, Tremoulet AH, Shimizu C, Burns JC, Chen SR, Moon HK, Lange C, Randolph AG, and Khurana S
- Subjects
- Adolescent, Antibodies, Viral, Child, Child, Preschool, Humans, Membrane Glycoproteins, Neutralization Tests, Spike Glycoprotein, Coronavirus, Systemic Inflammatory Response Syndrome, Viral Envelope Proteins, COVID-19 complications, SARS-CoV-2
- Abstract
Neutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5-11, 12-21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children., (© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.)
- Published
- 2022
- Full Text
- View/download PDF
20. Neutralization of SARS-CoV-2 Omicron after vaccination of patients with myelodysplastic syndromes or acute myeloid leukemia.
- Author
-
Bellusci L, Grubbs G, Srivastava P, Nemeth MJ, Griffiths EA, Golding H, and Khurana S
- Subjects
- Humans, SARS-CoV-2, Vaccination adverse effects, COVID-19 prevention & control, Leukemia, Myeloid, Acute therapy, Myelodysplastic Syndromes therapy
- Published
- 2022
- Full Text
- View/download PDF
21. Immune Response to SARS-CoV-2 Vaccine and Following Breakthrough Omicron Infection in an Autoimmune Patient with Hashimoto's Thyroiditis, Pernicious Anemia, and Chronic Atrophic Autoimmune Gastritis: A Case Report.
- Author
-
Cluff E, Bellusci L, Golding H, and Khurana S
- Abstract
In healthy adults, hybrid immunity induced by prior SARS-CoV-2 infection followed by two doses of mRNA vaccination provide protection against symptomatic SARS-CoV-2 infection. However, the role of hybrid immunity in autoimmune patients against Omicron is not well documented. Here, we report a young autoimmune patient with prior infection and two doses of mRNA-1273 vaccination who was exposed to Omicron and developed a symptomatic disease. Prior to Omicron infection, the patient had strong neutralizing antibody titers against the vaccine strain, but no neutralization of Omicron. Post Omicron infection, high neutralizing titers against Omicron were observed. Furthermore, enhanced neutralizing antibody titers against other variants of concern-Alpha, Beta, Gamma, and Delta-were observed, suggesting an expansion of cross-reactive memory B-cell response by the SARS-CoV-2 Omicron infection. Autoimmune patients may require careful monitoring of immune function over time to optimize booster vaccine administration.
- Published
- 2022
- Full Text
- View/download PDF
22. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review.
- Author
-
Gillis RA, Dezfuli G, Bellusci L, Vicini S, and Sahibzada N
- Subjects
- Animals, Mice, Patch-Clamp Techniques, Solitary Nucleus, Vagus Nerve physiology, Brain Stem physiology, Stomach
- Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV., (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
23. Redox Properties of 3-Iodothyronamine (T1AM) and 3-Iodothyroacetic Acid (TA1).
- Author
-
Gencarelli M, Lodovici M, Bellusci L, Raimondi L, and Laurino A
- Subjects
- Monoamine Oxidase metabolism, Oxidation-Reduction, Reactive Oxygen Species, Thyroid Hormones metabolism, Thyronines metabolism, Thyronines pharmacology, Hydroxyl Radical, Sirtuin 1 metabolism
- Abstract
3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1) are thyroid-hormone-related compounds endowed with pharmacological activity through mechanisms that remain elusive. Some evidence suggests that they may have redox features. We assessed the chemical activity of T1AM and TA1 at pro-oxidant conditions. Further, in the cell model consisting of brown adipocytes (BAs) differentiated for 6 days in the absence (M cells) or in the presence of 20 nM T1AM (M + T1AM cells), characterized by pro-oxidant metabolism, or TA1 (M + TA1 cells), we investigated the expression/activity levels of pro- and anti-oxidant proteins, including UCP-1, sirtuin-1 (SIRT1), mitochondrial monoamine (MAO-A and MAO-B), semicarbazide-sensitive amine oxidase (SSAO), and reactive oxygen species (ROS)-dependent lipoperoxidation. T1AM and TA1 showed in-vitro antioxidant and superoxide scavenging properties, while only TA1 acted as a hydroxyl radical scavenger. M + T1AM cells showed higher lipoperoxidation levels and reduced SIRT1 expression and activity, similar MAO-A, but higher MAO-B activity in terms of M cells. Instead, the M + TA1 cells exhibited increased levels of SIRT1 protein and activity and significantly lower UCP-1, MAO-A, MAO-B, and SSAO in comparison with the M cells, and did not show signs of lipoperoxidation. Our results suggest that SIRT1 is the mediator of T1AM and TA1 pro-or anti-oxidant effects as a result of ROS intracellular levels, including the hydroxyl radical. Here, we provide evidence indicating that T1AM and TA1 administration impacts on the redox status of a biological system, a feature that indicates the novel mechanism of action of these two thyroid-hormone-related compounds.
- Published
- 2022
- Full Text
- View/download PDF
24. Endogenous 3-Iodothyronamine (T1AM) and Synthetic Thyronamine-like Analog SG-2 Act as Novel Pleiotropic Neuroprotective Agents Through the Modulation of SIRT6.
- Author
-
Bellusci L, Runfola M, Carnicelli V, Sestito S, Fulceri F, Santucci F, Lenzi P, Fornai F, Rapposelli S, Origlia N, Zucchi R, and Chiellini G
- Subjects
- Alzheimer Disease pathology, Amyloid beta-Peptides metabolism, Animals, Autophagosomes drug effects, Autophagosomes ultrastructure, Autophagy drug effects, Autophagy genetics, Cell Line, Tumor, Disease Models, Animal, Entorhinal Cortex pathology, Gangliosides chemistry, Gene Expression Regulation drug effects, Humans, Long-Term Potentiation drug effects, Mice, Transgenic, Neuroprotective Agents chemistry, TOR Serine-Threonine Kinases metabolism, Thyronines chemistry, Gangliosides pharmacology, Neuroprotective Agents pharmacology, Sirtuins metabolism, Thyronines pharmacology
- Abstract
3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition. This effect was concomitant with down-regulation of autophagy-related genes, including Hif1α, p53 and mTOR. Remarkably, when mTOR was inhibited a concomitant activation of autophagy and UP took place in U87MG cells. Since both compounds activate autophagy, which is known to sustain long term potentiation (LTP) in the entorhinal cortex (EC) and counteracting AD pathology, further electrophysiological studies were carried out in a transgenic mouse model of AD. We found that SG-2 was able to rescue LTP with an efficacy comparable to T1AM, further underlying its potential as a novel pleiotropic agent for neurodegenerative disorders treatment.
- Published
- 2020
- Full Text
- View/download PDF
25. Design, synthesis and biological evaluation of novel TRβ selective agonists sustained by ADME-toxicity analysis.
- Author
-
Runfola M, Sestito S, Bellusci L, La Pietra V, D'Amore VM, Kowalik MA, Chiellini G, Gul S, Perra A, Columbano A, Marinelli L, Novellino E, and Rapposelli S
- Subjects
- Animals, Dose-Response Relationship, Drug, Hep G2 Cells, Humans, Male, Molecular Structure, Pyridazines chemical synthesis, Pyridazines chemistry, Rats, Rats, Inbred F344, Structure-Activity Relationship, Uracil chemical synthesis, Uracil chemistry, Uracil pharmacology, Drug Design, Pyridazines pharmacology, Thyroid Hormone Receptors beta agonists, Uracil analogs & derivatives
- Abstract
Although triiodothyronine (T3) induces several beneficial effects on lipid metabolism, its use is hampered by toxic side-effects, such as tachycardia, arrhythmia, heart failure, bone and muscle catabolism and mood disturbances. Since the α isoform of thyroid hormone receptors (TRs) is the main cause of T3-related harmful effects, several efforts have been made to develop selective agonists of the β isoform that could induce some beneficial effects (i.e. lowering triglyceride and cholesterol levels reducing obesity and improving metabolic syndrome), while overcoming most of the adverse T3-dependent side effects. Herein, we describe the drug discovery process sustained by ADME-Toxicity analysis that led us to identify novel agonists with selectivity for the isoform TRβ and an acceptable off-target and absorption, distribution metabolism, excretion and toxicity (ADME-Tox) profile. Within the small series of compounds synthesized, derivatives 1 and 3, emerge from this analysis as "potentially safe" to be engaged in preclinical studies. In in vitro investigation proved that both compounds were able to reduce lipid accumulation in HepG2 and promote lipolysis with comparable effects to those elicited by T3, used as reference drug. Moreover, a preliminary in vivo study confirmed the apparent lack of toxicity, thus suggesting compounds 1 and 3 as new potential TRβ-selective thyromimetics., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2019 Elsevier Masson SAS. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
26. Lipolytic Effects of 3-Iodothyronamine (T1AM) and a Novel Thyronamine-Like Analog SG-2 through the AMPK Pathway.
- Author
-
Rogowski M, Bellusci L, Sabatini M, Rapposelli S, Rahman SM, Chiellini G, and Assadi-Porter FM
- Subjects
- 3T3-L1 Cells, Animals, Cellular Reprogramming drug effects, Glycerol metabolism, Hep G2 Cells, Humans, Lipid Metabolism drug effects, Lipolysis drug effects, Mice, Mitochondria drug effects, Mitochondria metabolism, Thyronines pharmacology
- Abstract
3-Iodothyronamine (T1AM) and its synthetic analog SG-2 are rapidly emerging as promising drivers of cellular metabolic reprogramming. Our recent research indicates that in obese mice a sub-chronic low dose T1AM treatment increased lipolysis, associated with significant weight loss independent of food consumption. The specific cellular mechanism of T1AM's lipolytic effect and its site of action remains unknown. First, to study the mechanism used by T1AM to gain entry into cells, we synthesized a fluoro-labeled version of T1AM (FL-T1AM) by conjugating it to rhodamine (TRITC) and analyzed its cellular uptake and localization in 3T3-L1 mouse adipocytes. Cell imaging using confocal microscopy revealed a rapid intercellular uptake of FL-T1AM into mitochondria without localization to the lipid droplet or nucleus of mature adipocytes. Treatment of 3T3-L1 adipocytes with T1AM and SG-2 resulted in decreased lipid accumulation, the latter showing a significantly higher potency than T1AM (10 µM vs. 20 µM, respectively). We further examined the effects of T1AM and SG-2 on liver HepG2 cells. A significant decrease in lipid accumulation was observed in HepG2 cells treated with T1AM or SG-2, due to increased lipolytic activity. This was confirmed by accumulation of glycerol in the culture media and through activation of the AMPK/ACC signaling pathways.
- Published
- 2019
- Full Text
- View/download PDF
27. Brain Histamine Modulates the Antidepressant-Like Effect of the 3-Iodothyroacetic Acid (TA1).
- Author
-
Laurino A, Landucci E, Cinci L, Gencarelli M, De Siena G, Bellusci L, Chiellini G, and Raimondi L
- Abstract
3-iodothyroacetic acid (TA1), an end metabolite of thyroid hormone, has been shown to produce behavioral effects in mice that are dependent on brain histamine. We now aim to verify whether pharmacologically administered TA1 has brain bioavailability and is able to induce histamine-dependent antidepressant-like behaviors. TA1 brain, liver and plasma levels were measured by LC/MS-MS in male CD1 mice, sacrificed 15 min after receiving a high TA1 dose (330 μgkg
-1 ). The hypothalamic mTOR/AKT/GSK-β cascade activation was evaluated in mice treated with 0.4, 1.32, 4 μgkg-1 TA1 by Western-blot. Mast cells were visualized by immuno-histochemistry in brain slices obtained from mice treated with 4 μgkg-1 TA1. Histamine release triggered by TA1 (20-1000 nM) was also evaluated in mouse peritoneal mast cells. After receiving TA1 (1.32, 4 or 11 μgkg-1 ; i.p.) CD1 male mice were subjected to the forced swim (FST) and the tail suspension tests (TST). Spontaneous locomotor and exploratory activities, motor incoordination, and anxiolytic or anxiogenic effects, were evaluated. Parallel behavioral tests were also carried out in mice that, prior to receiving TA1, were pre-treated with pyrilamine (10 mgkg-1; PYR) or zolantidine (5 mgkg-1 ; ZOL), histamine type 1 and type 2 receptor antagonists, respectively, or with p -chloro-phenylalanine (100 mgkg-1 ; PCPA), an inhibitor of serotonin synthesis. TA1 given i.p. to mice rapidly distributes in the brain, activates the hypothalamic mTOR/AKT and GSK-3β cascade and triggers mast cells degranulation. Furthermore, TA1 induces antidepressant effects and stimulates locomotion with a mechanism that appears to depend on the histaminergic system. TA1 antidepressant effect depends on brain histamine, thus highlighting a relationship between the immune system, brain inflammation and the thyroid.- Published
- 2019
- Full Text
- View/download PDF
28. Memantine prodrug as a new agent for Alzheimer's Disease.
- Author
-
Sestito S, Daniele S, Pietrobono D, Citi V, Bellusci L, Chiellini G, Calderone V, Martini C, and Rapposelli S
- Subjects
- Amyloid beta-Peptides pharmacology, Animals, Autophagy drug effects, Cell Line, Humans, Hydrogen Sulfide metabolism, Hydrogen Sulfide pharmacology, Inflammation, Memantine analogs & derivatives, Memantine metabolism, Microglia drug effects, Neurons drug effects, Neuroprotective Agents pharmacology, Primary Cell Culture, Prodrugs pharmacology, Rats, Rats, Sprague-Dawley, Reactive Oxygen Species, Alzheimer Disease drug therapy, Memantine pharmacology
- Abstract
Hydrogen sulphide has recently drawn much attention due to its potent anti-inflammatory and neuroprotective roles in brain functions. The purpose of the current study was to exploit these beneficial properties of H
2 S to design a new agent for the treatment of Alzheimer's disease (AD). To pursue our aims, we replaced the free amine group of memantine with an isothiocyanate functionality as a putative H2 S-donor moiety. The new chemical entity, named memit, was then tested in vitro to determine whether it retains the pharmacological profile of the "native drug", while also providing a source of H2 S in the CNS. Indeed, Memit showed the ability to release H2 S through a cysteine-mediated mechanism, thus generating memantine. Moreover, the new hybrid molecule exerts protective effects against neuronal inflammation and induces a drastic fall in ROS production. In addition, memit was also able to reduce the Aβ(1-42) self-induced aggregation and exerted cytoprotective effect against Aβ oligomers-induced damage in both human neurons and rat microglia cells. Finally, similarly to memantine, the new compound promotes autophagy, a complex process required for cellular homeostasis in cell survival that results to be altered in neurodegenerative diseases. In conclusion, our study revealed that memit is a prodrug of memantine. Further in vivo studies will be necessary to fully investigate the synergic or cumulative effects due to the H2 S-releasing moiety and the native drug.- Published
- 2019
- Full Text
- View/download PDF
29. Thyronamines and Analogues - The Route from Rediscovery to Translational Research on Thyronergic Amines.
- Author
-
Chiellini G, Bellusci L, Sabatini M, and Zucchi R
- Subjects
- Amines chemistry, Animals, Gene Expression Regulation drug effects, Gene Regulatory Networks drug effects, Humans, Molecular Structure, Signal Transduction, Structure-Activity Relationship, Thyronines chemistry, Thyronines pharmacology, Translational Research, Biomedical, Amines pharmacology, Receptors, G-Protein-Coupled metabolism
- Abstract
Thyronamines are a novel class of endogenous signaling compounds, structurally related to thyroid hormones (THs). Specific thyronamines, particularly 3-iodothyronamine (T1AM), stimulate with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor, and may also interact with other TAAR subtypes (particularly TAAR5), adrenergic receptors (particularly α2 receptors), amine transporters, and mitochondrial proteins. In addition to its structural similarities with THs, T1AM also contains the arylethylamine scaffold as in monoamine neurotransmitters, implicating an intriguing role for T1AM as both a neuromodulator and a hormone-like molecule constituting a part of thyroid hormone signaling. A large number of T1AM derivatives have already been synthesized. We discuss the different chemical strategies followed to obtain thyronamine analogues, their potency at TAAR1, and their structure-activity relationship. Preliminary characterization of the functional effects of these synthetic compounds is also provided., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
30. New Insights into the Potential Roles of 3-Iodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection.
- Author
-
Bellusci L, Laurino A, Sabatini M, Sestito S, Lenzi P, Raimondi L, Rapposelli S, Biagioni F, Fornai F, Salvetti A, Rossi L, Zucchi R, and Chiellini G
- Abstract
3-Iodothyronamine (T1AM) is an endogenous high-affinity ligand of the trace amine-associated receptor 1 (TAAR1), detected in mammals in many organs, including the brain. Recent evidence indicates that pharmacological TAAR1 activation may offer a novel therapeutic option for the treatment of a wide range of neuropsychiatric and metabolic disorders. To assess potential neuroprotection by TAAR1 agonists, in the present work, we initially investigated whether T1AM and its corresponding 3-methylbiaryl-methane analog SG-2 can improve learning and memory when systemically administered to mice at submicromolar doses, and whether these effects are modified under conditions of MAO inhibition by clorgyline. Our results revealed that when i.p. injected to mice, both T1AM and SG-2 produced memory-enhancing and hyperalgesic effects, while increasing ERK1/2 phosphorylation and expression of transcription factor c -fos. Notably, both compounds appeared to rely on the action of ubiquitous enzymes MAO to produce the corresponding oxidative metabolites that were then able to activate the histaminergic system. Since autophagy is key for neuronal plasticity, in a second line of experiments we explored whether T1AM and synthetic TAAR1 agonists SG1 and SG2 were able to induce autophagy in human glioblastoma cell lines (U-87MG). After treatment of U-87MG cells with 1 μM T1AM, SG-1, SG-2 transmission electron microscopy (TEM) and immunofluorescence (IF) showed a significant time-dependent increase of autophagy vacuoles and microtubule-associated protein 1 light chain 3 (LC3). Consistently, Western blot analysis revealed a significant increase of the LC3II/LC3I ratio, with T1AM and SG-1 being the most effective agents. A decreased level of the p62 protein was also observed after treatment with T1AM and SG-1, which confirms the efficacy of these compounds as autophagy inducers in U-87MG cells. In the process to dissect which pathway induces ATG, the effects of these compounds were evaluated on the PI3K-AKT-mTOR pathway. We found that 1 μM T1AM, SG-1 and SG-2 decreased pAKT/AKT ratio at 0.5 and 4 h after treatment, suggesting that autophagy is induced by inhibiting mTOR phosphorylation by PI3K-AKT-mTOR pathway. In conclusion, our study shows that T1AM and thyronamine-like derivatives SG-1 and SG-2 might represent valuable tools to therapeutically intervene with neurological disorders.
- Published
- 2017
- Full Text
- View/download PDF
31. Hit-to-Lead Optimization of Mouse Trace Amine Associated Receptor 1 (mTAAR1) Agonists with a Diphenylmethane-Scaffold: Design, Synthesis, and Biological Study.
- Author
-
Chiellini G, Nesi G, Sestito S, Chiarugi S, Runfola M, Espinoza S, Sabatini M, Bellusci L, Laurino A, Cichero E, Gainetdinov RR, Fossa P, Raimondi L, Zucchi R, and Rapposelli S
- Subjects
- Animals, Benzhydryl Compounds chemical synthesis, Benzhydryl Compounds chemistry, Cells, Cultured, Dose-Response Relationship, Drug, HEK293 Cells, Hep G2 Cells, Humans, Mice, Molecular Docking Simulation, Molecular Structure, Structure-Activity Relationship, Benzhydryl Compounds pharmacology, Drug Design, Receptors, G-Protein-Coupled agonists
- Abstract
The trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptors (GPCR) potently activated by a variety of molecules besides trace amines (TAs), including thyroid hormone-derivatives like 3-iodothyronamine (T1AM), catechol-O-methyltransferase products like 3-methoxytyramine, and amphetamine-related compounds. Accordingly, TAAR1 is considered a promising target for medicinal development. To gain more insights into TAAR1 physiological functions and validation of its therapeutic potential, we recently developed a new class of thyronamine-like derivatives. Among them compound SG2 showed high affinity and potent agonist activity at mouse TAAR1. In the present work, we describe design, synthesis, and SAR study of a new series of compounds (1-16) obtained by introducing specific structural changes at key points of our lead compound SG2 skeleton. Five of the newly synthesized compounds displayed mTAAR1 agonist activity higher than both SG2 and T1AM. Selected diphenylmethane analogues, namely 1 and 2, showed potent functional activity in in vitro and in vivo models.
- Published
- 2016
- Full Text
- View/download PDF
32. [Removable partial dentures].
- Author
-
Bellusci L
- Subjects
- Dental Abutments, Denture Design, Denture, Partial, Removable
- Published
- 1982
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.