15 results on '"Liang, Eric"'
Search Results
2. Developing a Method to Estimate the Downstream Metabolite Signals from Hyperpolarized [1-13C]Pyruvate
- Author
-
Ching-Yi Hsieh, Cheng-Hsuan Sung, Yi-Liang (Eric) Shen, Ying-Chieh Lai, Kuan-Ying Lu, and Gigin Lin
- Subjects
hyperpolarized carbon-13 ,metabolites ,apparent exchange rate ,kinetic model ,Chemical technology ,TP1-1185 - Abstract
Hyperpolarized carbon-13 MRI has the advantage of allowing the study of glycolytic flow in vivo or in vitro dynamically in real-time. The apparent exchange rate constant of a metabolite dynamic signal reflects the metabolite changes of a disease. Downstream metabolites can have a low signal-to-noise ratio (SNR), causing apparent exchange rate constant inconsistencies. Thus, we developed a method that estimates a more accurate metabolite signal. This method utilizes a kinetic model and background noise to estimate metabolite signals. Simulations and in vitro studies with photon-irradiated and control groups were used to evaluate the procedure. Simulated and in vitro exchange rate constants estimated using our method were compared with the raw signal values. In vitro data were also compared to the Area-Under-Curve (AUC) of the cell medium in 13C Nuclear Magnetic Resonance (NMR). In the simulations and in vitro experiments, our technique minimized metabolite signal fluctuations and maintained reliable apparent exchange rate constants. In addition, the apparent exchange rate constants of the metabolites showed differences between the irradiation and control groups after using our method. Comparing the in vitro results obtained using our method and NMR, both solutions showed consistency when uncertainty was considered, demonstrating that our method can accurately measure metabolite signals and show how glycolytic flow changes. The method enhanced the signals of the metabolites and clarified the metabolic phenotyping of tumor cells, which could benefit personalized health care and patient stratification in the future.
- Published
- 2022
- Full Text
- View/download PDF
3. Synthesis of neutral ether lipid monoalkyl-diacylglycerol by lipid acyltransferases[S]
- Author
-
Zhengping Ma, Joelle M. Onorato, Luping Chen, David W. Nelson, Chi-Liang Eric Yen, and Dong Cheng
- Subjects
Wolman's disease • alkylglycerol • membrane bound O-acyltransferase ,Biochemistry ,QD415-436 - Abstract
In mammals, ether lipids exert a wide spectrum of signaling and structural functions, such as stimulation of immune responses, anti-tumor activities, and enhancement of sperm functions. Abnormal accumulation of monoalkyl-diacylglycerol (MADAG) was found in Wolman's disease, a human genetic disorder defined by a deficiency in lysosomal acid lipase. In the current study, we found that among the nine recombinant human lipid acyltransferases examined, acyl-CoA:diacylglycerol acyltransferase (DGAT)1, DGAT2, acyl-CoA:monoacylglycerol acyltransferase (MGAT)2, MGAT3, acyl-CoA:wax-alcohol acyltransferase 2/MFAT, and DGAT candidate 3 were able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG). These enzymes demonstrated different enzymatic turnover rates and relative efficiencies for the first and second acylation steps leading to the synthesis of MAMAG and MADAG, respectively. They also exhibited different degrees of substrate preference when presented with 1-monooleoylglycerol versus 1-MAkG. In CHO-K1 cells, treatment with DGAT1 selective inhibitor, XP-620, completely blocked the synthesis of MADAG, indicating that DGAT1 is the predominant enzyme responsible for the intracellular synthesis of MADAG in this model system. The levels of MADAG in the adrenal gland of DGAT1 KO mice were reduced as compared with those of the WT mice, suggesting that DGAT1 is a major enzyme for the synthesis of MADAG in this tissue. Our findings indicate that several of these lipid acyltransferases may be able to synthesize neutral ether lipids in mammals.
- Published
- 2017
- Full Text
- View/download PDF
4. Mogat1 deletion does not ameliorate hepatic steatosis in lipodystrophic (Agpat2−/−) or obese (ob/ob) mice
- Author
-
Anil K. Agarwal, Katie Tunison, Jasbir S. Dalal, Chi-Liang Eric Yen, Robert V. Jr.Farese, Jay D. Horton, and Abhimanyu Garg
- Subjects
monoacylglycerol O-acyltransferase 1 ,fatty liver ,1-acylglycerol-3-phosphate O-acyltransferase 2 ,lipodystrophy ,diabetes ,ob/ob ,Biochemistry ,QD415-436 - Abstract
Reducing triacylglycerol (TAG) in the liver continues to pose a challenge in states of nonalcoholic hepatic steatosis. Monoacylglycerol O-acyltransferase (MOGAT) enzymes convert monoacylglycerol (MAG) to diacylglycerol, a precursor for TAG synthesis, and are involved in a major pathway of TAG synthesis in selected tissues, such as small intestine. MOGAT1 possesses MGAT activity in in vitro assays, but its physiological function in TAG metabolism is unknown. Recent studies suggest a role for MOGAT1 in hepatic steatosis in lipodystrophic [1-acylglycerol-3-phosphate O-acyltransferase (Agpat)2−/−] and obese (ob/ob) mice. To test this, we deleted Mogat1 in the Agpat2−/− and ob/ob genetic background to generate Mogat1−/−;Agpat2−/− and Mogat1−/−;ob/ob double knockout (DKO) mice. Here we report that, despite the absence of Mogat1 in either DKO mouse model, we did not find any decrease in liver TAG by 16 weeks of age. Additionally, there were no measureable changes in plasma glucose (diabetes) and insulin resistance. Our data indicate a minimal role, if any, of MOGAT1 in liver TAG synthesis, and that TAG synthesis in steatosis associated with lipodystrophy and obesity is independent of MOGAT1. Our findings suggest that MOGAT1 likely has an alternative function in vivo.
- Published
- 2016
- Full Text
- View/download PDF
5. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism
- Author
-
Chi-Liang Eric Yen, David W. Nelson, and Mei-I Yen
- Subjects
triglyceride ,gut hormones ,obesity ,acyltransferases ,Biochemistry ,QD415-436 - Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
- Published
- 2015
- Full Text
- View/download PDF
6. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice
- Author
-
Yu Gao, David W. Nelson, Taylor Banh, Mei-I Yen, and Chi-Liang Eric Yen
- Subjects
triacylglycerol ,dietary fat ,neutral lipid metabolism ,Biochemistry ,QD415-436 - Abstract
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the resynthesis of triacylglycerol, a crucial step in the absorption of dietary fat. Mice lacking the gene Mogat2, which codes for an MGAT highly expressed in the small intestine, are resistant to obesity and other metabolic disorders induced by high-fat feeding. Interestingly, these Mogat2−/− mice absorb normal amounts of dietary fat but exhibit a reduced rate of fat absorption, increased energy expenditure, decreased respiratory exchange ratio, and impaired metabolic efficiency. MGAT2 is expressed in tissues besides intestine. To test the hypothesis that intestinal MGAT2 enhances metabolic efficiency and promotes the storage of metabolic fuels, we introduced the human MOGAT2 gene driven by the intestine-specific villin promoter into Mogat2−/− mice. We found that the expression of MOGAT2 in the intestine increased intestinal MGAT activity, restored fat absorption rate, partially corrected energy expenditure, and promoted weight gain upon high-fat feeding. However, the changes in respiratory exchange ratio were not reverted, and the recoveries in metabolic efficiency and weight gain were incomplete. These data indicate that MGAT2 in the intestine plays an indispensable role in enhancing metabolic efficiency but also raise the possibility that MGAT2 in other tissues may contribute to the regulation of energy metabolism.
- Published
- 2013
- Full Text
- View/download PDF
7. Deficiency of MGAT2 increases energy expenditure without high-fat feeding and protects genetically obese mice from excessive weight gain
- Author
-
David W. Nelson, Yu Gao, Nicole M. Spencer, Taylor Banh, and Chi-Liang Eric Yen
- Subjects
triacylglycerol ,dietary fat ,neutral lipid metabolism ,monoacylglycerol acyltransferase ,high fat ,Biochemistry ,QD415-436 - Abstract
Acyl CoA:monoacylglycerol acyltransferase 2 (MGAT2) is thought to be crucial for dietary fat absorption. Indeed, mice lacking the enzyme (Mogat2−/−) are resistant to obesity and other metabolic disorders induced by high-fat feeding. However, these mice absorb normal quantities of fat. To explore whether a high level of dietary fat is an essential part of the underlying mechanism(s), we examined metabolic responses of Mogat2−/− mice to diets containing varying levels of fat. Mogat2−/− mice exhibited 10−15% increases in energy expenditure compared with wild-type littermates; although high levels of dietary fat exacerbated the effect, this phenotype was expressed even on a fat-free diet. When deprived of food, Mogat2−/− mice expended energy and lost weight like wild-type controls. To determine whether MGAT2 deficiency protects against obesity in the absence of high-fat feeding, we crossed Mogat2−/− mice with genetically obese Agouti mice. MGAT2 deficiency increased energy expenditure and prevented these mice from gaining excess weight. Our results suggest that MGAT2 modulates energy expenditure through multiple mechanisms, including one independent of dietary fat; these findings also raise the prospect of inhibiting MGAT2 as a strategy for combating obesity and related metabolic disorders resulting from excessive calorie intake.
- Published
- 2011
- Full Text
- View/download PDF
8. Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis
- Author
-
Chi-Liang Eric Yen, Scot J. Stone, Suneil Koliwad, Charles Harris, and Robert V. Farese, Jr.
- Subjects
triacylglycerols ,triglycerides ,acyl-CoA:diacylglycerol acyltransferase ,diacylglycerol ,fatty acyl-CoA ,lipoprotein ,Biochemistry ,QD415-436 - Abstract
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.
- Published
- 2008
- Full Text
- View/download PDF
9. A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters
- Author
-
Chi-Liang Eric Yen, Charles H. Brown, IV, Mara Monetti, and Robert V. Farese, Jr.
- Subjects
neutral lipids ,diacylglycerol ,fatty alcohol ,esterification ,Biochemistry ,QD415-436 - Abstract
Acyl-CoA-dependent O-acyltransferases catalyze reactions in which fatty acyl-CoAs are joined to acyl acceptors containing free hydroxyl groups to produce neutral lipids. In this report, we characterize a human multifunctional O-acyltransferase (designated MFAT) that belongs to the acyl-CoA:diacylglycerol acyltransferase 2/acyl-CoA:monoacylglycerol acyltransferase (MGAT) gene family and is highly expressed in the skin. Membranes of insect cells and homogenates of mammalian cells overexpressing MFAT exhibited significantly increased MGAT, acyl-CoA:fatty acyl alcohol acyltransferase (wax synthase), and acyl-CoA:retinol acyltransferase (ARAT) activities, which catalyze the synthesis of diacylglycerols, wax monoesters, and retinyl esters, respectively. Furthermore, when provided with the appropriate substrates, intact mammalian cells overexpressing MFAT accumulated more waxes and retinyl esters than control cells.We conclude that MFAT is a multifunctional acyltransferase that likely plays an important role in lipid metabolism in human skin.
- Published
- 2005
- Full Text
- View/download PDF
10. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters
- Author
-
Chi-Liang Eric Yen, Mara Monetti, Betty J. Burri, and Robert V. Farese, Jr.
- Subjects
acyl CoA:diacylglycerol acyltransferase ,retinol (vitamin A) ,wax ester ,monoacylglycerol ,Biochemistry ,QD415-436 - Abstract
The final step of triacylglycerol biosynthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. The two known DGATs, DGAT1 and DGAT2, are encoded by unrelated genes. Although both DGAT1 and DGAT2 knockout mice have reduced tissue triacylglycerol contents, they have disparate phenotypes, prompting us to investigate whether the two enzymes have unrecognized functional differences. We now report that DGAT1 exhibits additional acyltransferase activities in vitro, including those of acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases, and acyl CoA:retinol acyltransferase (ARAT), which catalyze the synthesis of diacylglycerols, wax esters, and retinyl esters, respectively. These activities were demonstrated in in vitro assays with membranes from insect cells or homogenates from COS7 cells overexpressing DGAT1. Wax synthase and ARAT activities were also demonstrated in intact COS7 cells expressing DGAT1. Additionally, cells and tissues from DGAT1-deficient mice exhibited reduced ARAT activity, and the mice had increased levels of unesterified retinol in their livers on a high-retinol diet.Our findings indicate that DGAT1 can utilize a variety of acyl acceptors as substrates in vitro and suggest that these activities may be relevant to the in vivo functions of DGAT1.
- Published
- 2005
- Full Text
- View/download PDF
11. Cardiac Tamponade after Minimally Invasive Coronary Artery Bypass Graft
- Author
-
Liang, Erica Chiu, Rossi, Jennifer, and Gharahbaghian, Laleh
- Subjects
emergency ultrasound ,pericardial effusion ,shortness of breath ,Medicine ,Medical emergencies. Critical care. Intensive care. First aid ,RC86-88.9 - Published
- 2011
12. Secretion of Recombinant Interleukin-22 by Engineered Lactobacillus reuteri Reduces Fatty Liver Disease in a Mouse Model of Diet-Induced Obesity
- Author
-
Jee-Hwan Oh, Kathryn L. Schueler, Donnie S. Stapleton, Laura M. Alexander, Chi-Liang Eric Yen, Mark P. Keller, Alan D. Attie, and Jan-Peter van Pijkeren
- Subjects
diet-induced metabolic syndrome ,fatty liver disease ,IL-22 ,Lactobacillus reuteri ,probiotic ,engineered probiotic ,Microbiology ,QR1-502 - Abstract
ABSTRACT The incidence of metabolic syndrome continues to rise globally. In mice, intravenous administration of interleukin-22 (IL-22) ameliorates various disease phenotypes associated with diet-induced metabolic syndrome. In patients, oral treatment is favored over intravenous treatment, but methodologies to deliver IL-22 via the oral route are nonexistent. The goal of this study was to assess to what extent engineered Lactobacillus reuteri secreting IL-22 could ameliorate nonalcoholic fatty liver disease. We used a mouse model of diet-induced obesity and assessed various markers of metabolic syndrome following treatment with L. reuteri and a recombinant derivative. Mice that received an 8-week treatment of wild-type probiotic gained less weight and had a smaller fat pad than the control group, but these phenotypes were not further enhanced by recombinant L. reuteri. However, L. reuteri secreting IL-22 significantly reduced liver weight and triglycerides at levels that exceeded those of the probiotic wild-type treatment group. Our findings are interesting in light of the observed phenotypes associated with reduced nonalcoholic liver disease, in humans the most prevalent chronic liver disease, following treatment of a next-generation probiotic that is administered orally. Once biological and environmental containment strategies are in place, therapeutic applications of recombinant Lactobacillus reuteri are on the horizon. IMPORTANCE In humans, nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease due to the increased prevalence of obesity. While treatment of NAFLD is often geared toward lifestyle changes, such as diet and exercise, the use of dietary supplements such as probiotics is underinvestigated. Here, we report that probiotic Lactobacillus reuteri reduces fatty liver in a mouse model of diet-induced obesity. This phenotype was further enhanced upon delivery of recombinant interleukin-22 by engineered Lactobacillus reuteri. These observations pave the road to a better understanding of probiotic mechanisms driving the reduction of diet-induced steatosis and to development of next-generation probiotics for use in the clinic. Ultimately, these studies may lead to rational selection of (engineered) probiotics to ameliorate fatty liver disease.
- Published
- 2020
- Full Text
- View/download PDF
13. Does prenatal alcohol exposure cause a metabolic syndrome? (Non-)evidence from a mouse model of fetal alcohol spectrum disorder.
- Author
-
Robyn M Amos-Kroohs, David W Nelson, Timothy A Hacker, Chi-Liang Eric Yen, and Susan M Smith
- Subjects
Medicine ,Science - Abstract
Although prenatal alcohol exposure (PAE) reduces offspring growth, it may increase obesity risk at adolescence. Animal models of PAE display glucose intolerance and increased adiposity, suggesting that PAE causes metabolic reprogramming. We tested this hypothesis in a mouse model of binge PAE, wherein pregnant C57Bl/6J females received 3 g/kg alcohol (ETOH) daily from gestational day 12.5 to 17.5; maltodextrin (MD) and medium chain triglycerides (MCT) served as isocaloric nutritional controls, and sham (H2O) treatment controlled for gavage stress. Our comprehensive assessment quantified body composition, energy expenditure, glucose tolerance, and cardiovascular function in offspring at age 17 weeks. Although ETOH pups were initially lighter than all other groups, they did not have a unique obesogenic phenotype. Instead, a similar obesogenic phenotype emerged in all three caloric groups (MCT, MD, ETOH), such that caloric groups had greater post-weaning weight gain (both sexes), reduced gonadal fat weight (males), and reduced glucose clearance (males) compared against H2O offspring. PAE did not affect body composition, respiratory exchange ratio, metabolic adaption to high-fat or low-fat diet, eating behavior, and blood pressure, and ETOH values did not differ from those obtained from isocaloric controls. Exposure to a higher alcohol dose (4.5 g/kg) or a high-fat (60%) diet did not exacerbate differences in body composition or glucose tolerance. "PAE-specific" effects on postnatal growth, glucose tolerance, adiposity, or hypertension only emerged when PAE offspring were compared just against H2O controls, or against MD controls. We conclude that prior reports of obesity and glucose intolerance in adult PAE offspring reflect the contribution of added gestational calories, and not alcohol's pharmacologic action. Results suggest that the increased adiposity risk in FASD is not caused by metabolic reprogramming, and instead originates from behavioral, medication, and/or dietary practices. This study highlights the importance of appropriate dietary controls in nutritional studies of PAE.
- Published
- 2018
- Full Text
- View/download PDF
14. Syndecan-1 is required to maintain intradermal fat and prevent cold stress.
- Author
-
Ildiko Kasza, Yewseok Suh, Damian Wollny, Rod J Clark, Avtar Roopra, Ricki J Colman, Ormond A MacDougald, Timothy A Shedd, David W Nelson, Mei-I Yen, Chi-Liang Eric Yen, and Caroline M Alexander
- Subjects
Genetics ,QH426-470 - Abstract
Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1-/- intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology.
- Published
- 2014
- Full Text
- View/download PDF
15. Cholesterol and lipoprotein dynamics in a hibernating mammal.
- Author
-
Jessica P Otis, Daisy Sahoo, Victor A Drover, Chi-Liang Eric Yen, and Hannah V Carey
- Subjects
Medicine ,Science - Abstract
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.