Standard system is the overall strategic planning and implementation guidance for standardization in professional field. In view of the missing of standard system on intelligent agricultural machinery, a standard system framework was contributed for the industry of intelligent agricultural machinery in this study. Currently, in China, standardization work for the industry of intelligent agricultural machinery is carrying out unplanned and disorderly. Published standard is of limited number, and could not meet the industry needs. The adopted international standards take a high percentage of national standards, however, China-made intelligent agricultural machinery standard has not been promoted abroad. Based on the development goals and principles of standard system framework, 9 dimensions of level, binding force, generality, property, object, standard category, reference model, industry classification and industry sector were identified for the standard system framework of intelligent agricultural machinery. Three dimensional standard system framework was contributed for intelligent agricultural machinery. The level dimension included 5 elements of national standard, industry standard, local standard, group standard, and enterprise standard. The category dimension included 8 elements of safety, health, environmental protection, basic, methods, management, products, and others. The industry sector dimension included 9 elements of power machinery, seeding and fertilizing machinery, plant protection machinery, harvester, seed breeding and selection machinery, agricultural product storage and transport machinery, facility agriculture, livestock and poultry breeding machinery, and agricultural product processing machinery. In order to clear standard level and intuitively guide standard system table development, the three dimensional standard system framework was decomposed in two dimensions. The first layer was basis, included terminology, safety, environmental protection and reliability. The second layer was common features, included information perception, navigation and positioning, control communication, big data analysis, agricultural management platform. The third layer was applications, included operating power, seeding and fertilization, plant protection, harvesting, selection and breeding of seed, agricultural product storage, facility agriculture, livestock and poultry breeding, and agricultural product processing. Suggestions were proposed for standardization of intelligent agricultural machinery in China. Firstly, priorities of the standard system table should be worked out based on industry need and technological maturity. Secondly, practicability of the standard was suggested to be improved by developing the standard content based on industry needs and market prospect. In addition, a variety of resources of industry, university and research institute was suggested to be organized together to contribute to standardization work. In addition, the progress of international standardization was suggested to be tracked, and the China-made standard was suggested to be internationalized. Finally, the standardization work should be operated by the professional organizations and specialized talents. This standard system framework could be used to systematically guide the development, revision, implementation, and service of intelligent agricultural machinery standards, and lead the rapid development of intelligent agricultural machinery industry in China.