1. Short-term air quality prediction based on EMD-transformer-BiLSTM
- Author
-
Jie Dong, Yaoli Zhang, and Jiang Hu
- Subjects
Hourly forecast ,Air quality index ,Transformer ,BiLSTM ,EMD ,Medicine ,Science - Abstract
Abstract Actual acquired air quality time series data are highly volatile and nonstationary, and accurately predicting nonlinear time series data containing complex noise is an ongoing challenge. This paper proposes an air quality prediction method based on empirical mode decomposition (EMD), a transformer and a bidirectional long short-term memory neural network (BiLSTM), which is good at addressing the ultrashort-term prediction of nonlinear time-series data and shows good performance for application to the air quality dataset of Patna, India (6:00 am on October 3, 2015–0:00 pm on July 1, 2020). The AQI sequence is first decomposed into intrinsic mode functions (IMFs) via EMD and subsequently predicted separately via the improved transformer algorithm based on BiLSTM, where linear prediction is performed for IMFs with simple trends. Finally, the predicted values of each IMF are integrated using BiLSTM to obtain the predicted AQI values. This paper predicts the AQI in Patna with a time window of 5 h, and the RMSE, MAE and MAPE are as low as 5.6853, 2.8230 and 2.23%, respectively. Moreover, the scalability of the proposed model is validated on air quality datasets from several other cities, and the results prove that the proposed hybrid model has high performance and broad application prospects in real-time air quality prediction.
- Published
- 2024
- Full Text
- View/download PDF