Back to Search
Start Over
An efficient and accurate multi-level cascaded recurrent network for stereo matching
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract With the advent of Transformer-based convolutional neural networks, stereo matching algorithms have achieved state-of-the-art accuracy in disparity estimation. Nevertheless, this method requires much model inference time, which is the main reason limiting its application in many vision tasks and robots. Facing the trade-off problem between accuracy and efficiency, this paper proposes an efficient and accurate multi-level cascaded recurrent network, LMCR-Stereo. To recover the detailed information of stereo images more accurately, we first design a multi-level network to update the difference values in a coarse-to-fine recurrent iterative manner. Then, we propose a new pair of slow-fast multi-stage superposition inference structures to accommodate the differences between different scene data. Besides, to ensure better disparity estimation accuracy with faster model inference speed, we introduce a pair of adaptive and lightweight group correlation layers to reduce the impact of erroneous rectification and significantly improve model inference speed. The experimental results show that the proposed approach achieves a competitive disparity estimation accuracy with a faster model inference speed than the current state-of-the-art methods. Notably, the model inference speed of the proposed approach is improved by 46.0% and 50.4% in the SceneFlow test set and Middlebury benchmark, respectively.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.302c965c61194aebaed6765c87722afd
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-57321-6