1. Preconditioning the Initial State of Feeder-free Human Pluripotent Stem Cells Promotes Self-formation of Three-dimensional Retinal Tissue.
- Author
-
Kuwahara, Atsushi, Yamasaki, Suguru, Mandai, Michiko, Watari, Kenji, Matsushita, Keizo, Fujiwara, Masayo, Hori, Yoriko, Hiramine, Yasushi, Nukaya, Daiki, Iwata, Miki, Kishino, Akiyoshi, Takahashi, Masayo, Sasai, Yoshiki, and Kimura, Toru
- Subjects
PLURIPOTENT stem cells ,RETINA transplants ,EMBRYONIC stem cells ,CELL culture ,CELLULAR therapy - Abstract
A three-dimensional retinal tissue (3D-retina) is a promising graft source for retinal transplantation therapy. We previously demonstrated that embryonic stem cells (ESCs) can generate 3D-retina in vitro using a self-organizing stem cell culture technique known as SFEBq. Here we show an optimized culture method for 3D-retina generation from feeder-free human pluripotent stem cells (hPSCs). Although feeder-free hPSC-maintenance culture was suitable for cell therapy, feeder-free hPSC-derived aggregates tended to collapse during 3D-xdifferentiation culture. We found that the initial hPSC state was a key factor and that preconditioning of the hPSC state by modulating TGF-beta and Shh signaling improved self-formation of 3D-neuroepithelium. Using the preconditioning method, several feeder-free hPSC lines robustly differentiated into 3D-retina. In addition, changing preconditioning stimuli in undifferentiated hPSCs altered the proportions of neural retina and retinal pigment epithelium, important quality factors for 3D-retina. We demonstrated that the feeder-free hiPSC-derived 3D-retina differentiated into rod and cone photoreceptors in vitro and in vivo. Thus, preconditioning is a useful culture methodology for cell therapy to direct the initial hPSC state toward self-organizing 3D-neuroepithelium. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF