Back to Search Start Over

Prolonged Maturation Culture Favors a Reduction in the Tumorigenicity and the Dopaminergic Function of Human ESC-Derived Neural Cells in a Primate Model of Parkinson's Disease.

Authors :
Doi, Daisuke
Morizane, Asuka
Kikuchi, Tetsuhiro
Onoe, Hirotaka
Hayashi, Takuya
Kawasaki, Toshiyuki
Motono, Makoto
Sasai, Yoshiki
Saiki, Hidemoto
Gomi, Masanori
Yoshikawa, Tatsuya
Hayashi, Hideki
Shinoyama, Mizuya
Refaat, Mohamed M.
Suemori, Hirofumi
Miyamoto, Susumu
Takahashi, Jun
Source :
Stem Cells; May2012, Vol. 30 Issue 5, p935-945, 11p
Publication Year :
2012

Abstract

For the safe clinical application of embryonic stem cells (ESCs) for neurological diseases, it is critical to evaluate the tumorigenicity and function of human ESC (hESC)-derived neural cells in primates. We have herein, for the first time, compared the growth and function of hESC-derived cells with different stages of neural differentiation implanted in the brains of primate models of Parkinson's disease. We herein show that residual undifferentiated cells expressing ESC markers present in the cell preparation can induce tumor formation in the monkey brain. In contrast, a cell preparation matured by 42-day culture with brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor (BDNF/GDNF) treatment did not form tumors and survived as primarily dopaminergic (DA) neurons. In addition, the monkeys with such grafts showed behavioral improvement for at least 12 months. These results support the idea that hESCs, if appropriately matured, can serve as a source for DA neurons without forming any tumors in a primate brain. S TEM C ELLS 2012;30:935-945 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10665099
Volume :
30
Issue :
5
Database :
Complementary Index
Journal :
Stem Cells
Publication Type :
Academic Journal
Accession number :
74102814
Full Text :
https://doi.org/10.1002/stem.1060