1. Carvacrol modulates antioxidant enzymes, DNA integrity, and apoptotic markers in zearalenone-exposed fetal rat liver.
- Author
-
Eleyan M, Zughbur MR, Hussien M, Ayesh BM, and Ibrahim KA
- Abstract
Maternal exposure to zearalenone (ZEA), a mycotoxin, can impact fetal liver development. This study investigated the protective effects of carvacrol (CRV) against ZEA-induced fetal liver damage. Thirty-two pregnant rats were allocated to four groups (eight rats/group); control, CRV (75 mg/kg), ZEA (5 mg/kg), and co-treated group (ZEA + CRV). The animals were given their doses during the gestation period. Maternal exposure to ZEA revealed a significant increase in the malondialdehyde (MDA) level in the fetal liver. In contrast, glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities, besides glutathione (GSH) levels, were decreased in ZEA-intoxicated rats. Additionally, ZEA increased the expression of pro-apoptotic genes (P53, Bax, and caspase-9), elevated the immunoreactivity of caspase-3, decreased anti-apoptotic Bcl-2, and induced severe fatty degeneration, congestion, and necrosis in the fetal liver. The comet assays revealed significant DNA damage, as evidenced by reduced head DNA content and increased tail DNA content and tail moment in the ZEA-exposed rats. Surprisingly, co-treatment with CRV significantly mitigated fetal hepatic lipid peroxidation, antioxidant disturbance, apoptosis, and DNA damage after maternal exposure to ZEA. These findings highlight the potential of CRV as a promising approach to mitigate ZEA-associated developmental hepatotoxicity.
- Published
- 2024
- Full Text
- View/download PDF