4 results on '"Yetiş, Sibel Çimen"'
Search Results
2. Deep learning based tobacco products classification
- Author
-
Taşkıran, Murat, primary and Yetiş, Sibel Çimen, additional
- Published
- 2021
- Full Text
- View/download PDF
3. Myelin segmentation in fluorescence microscopy images
- Author
-
Yetiş, Sibel Çimen, Ekinci, Dursun Ali, Çakır, Ertan, Ekşioglu, Ender Mete, Ayten, Umut Engin, Çapar, Abdülkerim, Töreyin, Behçet Uğur, and Kerman, Bilal Ersen
- Subjects
Segmentation ,Mikroskobik Floresan Görüntüler ,Segmentasyon ,Fluorescence Microscopy Images ,Myelin ,Miyelin ,Semantic Segmentatio ,Anlamsal Bölütleme - Abstract
Aksonların etrafına sarılmış¸ miyelin kılıf, hızlı bir şekilde sinyal iletimini sağlar ve deformasyonu, Multipl Skleroz (MS) gibi çeşitli nörodejeneratif hastalıklara neden olur. Aday ilaç geliştirilmesi için, miyelinizasyonun miktarının belirlenebiliyor olması gerekmektedir. Miyelin nicelleştirilmesi, genellikle konfokal mikroskoplar tarafından elde edilen mikroskopik floresan görüntülerinde bir uzman tarafından miyelin etiketleme temeline dayanan ve yoğun emek gerektiren bir iştir. Bu çalışmada, floresan mikroskopi görüntülerinde anlamsal bölütlemeye dayalı bir otomatik miyelin belirleme yöntemi geliştirilmiştir. Üç kanallı ve üç boyutlu olarak mikroskoptan alınan, fare kök hücresinden türetilmiş¸ nöron ve oligodendrosit ortak kültürlerinin görüntüleri bir uzman tarafından etiketlenmiştir. Alınan görüntüler e˘gitim için yamalara ayrılmıs¸ ve etiketlerden de her yamanın karşılığı elde edilmiştir. Miyelin içeren ve içermeyen bögeleri tanımlamak üzere eğitim işlemi için 11552 yamadan olus¸an bir veri kümesi kullanılmıştır. Veri kümesinde çeşitli öğrenme algoritmaları kullanılarak anlamsal bölütleme tekniğinin miyelin tespit performansları değerlendirilmiştir. En yüksek doğruluk değeri olan yüzde 97.32, grup boyutu 8 ve devir sayısı 250 iken “RMSprop” öğrenme algoritması ile elde edilmiştir. Sonuçlarımız, önerilen otomatik segmentasyon yaklaşımının miyelin tespiti için uygun olduğunu göstermektedir. Burada açıklanan miyelin segmentasyon yaklaşımı, remiyelinizasyon ilaç taramalarının bir parçası haline gelecek potansiyele sahiptir. Myelin sheath, wrapped around axons, allows rapid neural signal transmission, and degeneration of myelin causes various neurodegenerative diseases, such as, Multiple Sclerosis (MS). For candidate drug discovery, it is essential to quantify myelin. This requires tedious expert labor comprising myelin labelling on microscopic fluorescence images, usually acquired by confocal microscopes. In this study, semantic segmentation based automatic myelin segmentation on fluorescence microscopy images was introduced. Three-channel and three-dimensional fluorescence images of mouse stem cell derived neuron and oligodendrocyte co-cultures were labeled by an expert. The images were divided into patches for training and the labels corresponded to each patch were acquired. A data set of 11552 patches was used for training to identify myelin and non-myelin regions. In the data set, myelin detection performances of semantic segmentation technique were evaluated using 3 different learning algorithms. The highest accuracy value of 97.32 percent was achieved by using 'RMSprop' learning algorithm with a group size of 8 and after 250 epochs. Results suggested that the proposed myelin segmentation method was suitable for detecting myelin. Thus, the outlined myelin segmentation method has the potential to be incorporated into remyelination drug screens.
- Published
- 2019
4. Oligodendrocyte interactome in healthy and diseased nervous system.
- Author
-
Kerman, Bilal Ersen, Aydınlı, Fatmagül İlayda, Vatandaşlar, Burcu Kurt, Yurduseven, Kübra, Vatandaşlar, Emre, Çelik, Eşref, Yetiş, Sibel Çimen, Çapar, Abdulkerim, Aladağ, Zeynep, Ekinci, Dursun Ali, Ayten, Umut Engin, Töreyin, Behçet Uğur, and Kurnaz, Işıl Aksan
- Subjects
NEUROLOGICAL disorders ,OLIGODENDROGLIA ,MYELIN proteins ,NERVOUS system ,DEMYELINATION ,MYELIN ,MULTIPLE sclerosis - Abstract
Objective: Myelin is essential for a healthy nervous system. Myelin formed by oligodendrocytes, accelerates impulse propagation and supports neuronal survival. Demyelination leads to neurodegeneration. In multiple sclerosis (MS) immune attack results in demyelination. Our goal is to dissect interactions among oligodendrocytes, neurons, and immune cells to improve our understanding of myelination and the demyelinating diseases. We aim to discover new targets for remyelination therapies. Methods: We are building tools for analyzing protein-protein and cell-to-cell interactions. To identify genes involved in myelination and MS, we developed a bioinformatics-based strategy, interactome analysis, which combines proteome and gene expression methodologies. Identified genes are evaluated in peripheral blood of MS patients and in mouse models. To accelerate drug discovery, 23 machine learning-based methodologies were assessed for myelin identification in fluorescent microscopy images. Results: Interactome analysis identified hundreds of proteinprotein interactions between pairs of oligodendrocytes, neurons, macrophages, microglia, and T cells. Most significant interactions are further analyzed in vivo and in vitro. Our customizedconvolutional neural network and Boosted Tree methods segmented myelin at over 98% accuracy. Identified myelin can be quantified and visualized in 3D. Conclusion: The interactome analysis yielded novel genes that are likely to be linked to MS. Machine learning-based methodologies are very effective in accelerating myelin quantification and thus, drug screens against demyelinating diseases such as MS. Overall, our innovative analysis strategies employing computer assistance produced novel avenues of exploration for myelination and demyelinating diseases. This study was supported TUBITAK (218S495,316S026), Istanbul Medipol University (BAP2018/06), and Turkish Academy of Sciences (GEBIP). [ABSTRACT FROM AUTHOR]
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.