1. Whole-body urea kinetics and functional roles of urea transporters and aquaporins in urea secretion into the rumen in sheep fed diets varying in crude protein content and corn grain processing method.
- Author
-
Burns KS, Penner GB, Hogan NS, and Mutsvangwa T
- Subjects
- Animals, Sheep physiology, Sheep metabolism, Male, Dietary Proteins metabolism, Animal Nutritional Physiological Phenomena, Kinetics, Urea metabolism, Rumen metabolism, Aquaporins metabolism, Aquaporins genetics, Zea mays metabolism, Urea Transporters, Animal Feed analysis, Diet veterinary, Membrane Transport Proteins metabolism, Membrane Transport Proteins genetics
- Abstract
The objectives were to determine the effects of dietary crude protein (CP) content and corn grain processing on whole-body urea kinetics and the functional roles of urea transporter-B (UT-B) and aquaporins (AQP) in serosal-to-mucosal urea flux (Jsm-urea) in ovine ruminal epithelia. Thirty-two Rideau-Arcott ram lambs were blocked by bodyweight into groups of 4 and then randomly allocated within blocks to 1 of 4 diets (n = 8) in a 2 × 2 factorial design. Dietary factors were CP content (11% [LP] vs. 16% [HP]) and corn grain processing (whole-shelled [WSC] vs. steam-flaked [SFC] corn). Whole-body urea kinetics and N balance were determined using 4-d continuous intrajugular infusions of [15N15N]-urea with concurrent collections of urine and feces with four blocks of lambs (n = 4). After 23 d on diets, lambs were killed to collect ruminal epithelia for mounting in Ussing chambers to determine Jsm-urea and the measurement of mRNA abundance of UT-B and AQP. Serosal and mucosal additions of phloretin and NiCl2 were used to inhibit UT-B- and AQP-mediated urea transport, respectively. Lambs fed HP had a greater (P < 0.01) N intake (29.4 vs. 19.1 g/d) than those fed LP; however, retained N (g/d or % of N intake) was not different. As a % of N intake, lambs fed SFC tended (P = 0.09) to have a lower N excretion (72.2 vs. 83.5%) and a greater N retention (27.8 vs. 16.6%) compared to those fed WSC. Endogenous urea-N production (UER) was greater in lambs fed HP compared to those fed LP (29.9 vs. 20.6 g/d; P = 0.02), whereas urea-N secreted into the gut (GER; g/d) and urea-N used for anabolic purposes (UUA; g/d) were similar. Lambs fed LP tended (P = 0.05) to have greater GER:UER (0.78 vs. 0.66) and UUA:GER (0.23 vs. 0.13) ratios, and a greater Jsm-urea (144.7 vs. 116.1 nmol/[cm2 × h]; P = 0.07) compared to those fed HP. Lambs fed SFC tended to have a lower NiCl2-insensitive Jsm-urea (117.4 vs. 178.4 nmol/[cm2 × h]; P = 0.09) and had a lower phloretin-insensitive Jsm-urea (87.1 vs. 143.1 nmol/[cm2 × h]; P = 0.02) compared to those fed WSC. The mRNA abundance of UT-B (0.89 vs. 1.07; P = 0.08) and AQP-3 (0.90 vs. 1.05; P = 0.07) tended to be lower in lambs fed SFC compared to those fed WSC. Overall, reducing CP content tended to increase the GER:UER ratio with no changes in the expression or function of UT-B and AQP. Although corn grain processing had no effects on GER, feeding SFC increased the portion of urea secretion into the rumen that was mediated via UT-B and AQP., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF