8,216 results on '"P. Lajoie"'
Search Results
2. Learning Versatile Optimizers on a Compute Diet
- Author
-
Moudgil, Abhinav, Knyazev, Boris, Lajoie, Guillaume, and Belilovsky, Eugene
- Subjects
Computer Science - Machine Learning - Abstract
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned update rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
- Published
- 2025
3. Emotion matters for academic success: Implications of the Article by Jarrell, Harley, Lajoie, and Naismith (2017) for creating nurturing and supportive learning environments to help students manage their emotions
- Author
-
Ge, Xun
- Published
- 2021
- Full Text
- View/download PDF
4. Flight Emotions Unleashed: Navigating Training Phases and Difficulty Levels in Simulated Flying
- Author
-
Alejandra Ruiz-Segura, Andrew Law, Sion Jennings, Alain Bourgon, Ethan Churchill, and Susanne Lajoie
- Abstract
Background: Flying accuracy is influenced by pilots' affective reactions to task demands. A better understanding of task-related emotions and flying performance is needed to enhance pilot training. Objective: Understand pilot trainees' performance and emotional dynamics (intensity, frequency and variability) based on training phase and difficulty level in a flight simulator. Methods: Twenty-three volunteers performed basic flight manoeuvres. Trials were divided into three phases: Introduction (trials 1-7), session A (trials 8-15) and session B (trials 16-22). Three task difficulty levels were implemented (low, medium and high). Flying performance was evaluated using root mean square error (RMSE) and expert ratings. Emotional intensity was inferred from physiological (electrodermal activity) and behavioural (facial expressions) emotional responses. Emotional variability was calculated to understand fluctuations among multiple emotions. Emotional responses were mapped into task-relevant emotions, like sadness with boredom, and fear with anxiety. Results and Conclusions: The most frequent facial expressions neutral, anger and surprise. Neutral and anger were interpreted as deep focus states. Surprise was likely a response to unexpected events. Flying performance and emotional dynamics varied across training phases and difficulty levels. During introduction, performance was less accurate, and emotions were less frequent. During session A, performance improved while participants experienced more physiological arousal and emotional variability. During session B, performance was the most accurate. In high-difficulty tasks, performance was the least accurate, participants expressed emotions with more frequency, more variability and higher physiological arousal. Future studies can use simulated flying tasks for trainees to familiarize with their emotional reactions to task demands expecting to improve training outcomes.
- Published
- 2024
- Full Text
- View/download PDF
5. The Relationship between Students' Self-Regulated Learning Behaviours and Problem-Solving Efficiency in Technology-Rich Learning Environments
- Author
-
Tingting Wang, Alejandra Ruiz-Segura, Shan Li, and Susanne P. Lajoie
- Abstract
Background: Scholars have confirmed the vital roles of self-regulated learning (SRL) behaviours in predicting task performance, especially within non-linear technology-rich learning environments (TREs). However, few studies focused on the learning costs (e.g., study effort and time-on-task) related to SRL and the efficiency outcome of SRL (i.e., the relative relationship between learning costs and performance). Objectives: This study examined the relationship between students' SRL behaviours and problem-solving efficiency in the context of TREs. Methods: Eighty-two medical students accomplished a diagnostic task in a computer-simulated environment, and they were classified into the efficient or less efficient group according to diagnostic performance and time-on-task. Then we coded students' SRL behaviours from trace data and counted the frequency of each SRL behaviour. The recurrence quantification and lag sequential analyses were performed to extract the dynamic characteristics of SRL behaviours, including recurrent patterns and sequential transitions. Results and Conclusions: Efficient students conducted more frequent Self-reflection behaviours than the less efficient. For the recurrent patterns, efficient students tended to exhibit longer SRL behaviour sequences comprising a variety of different SRL behaviours (e.g., Task Analysis > Add Test > Add Hypotheses > Categorise Evidence) as well as longer sequences of repeated SRL behaviours (e.g., Add Test > Add Test > Add Test > Add Test). Moreover, efficient students exhibited more sequential transitions between different SRL behaviours than less efficient. Takeaways: Overall, this study revealed the effects of SRL on problem-solving efficiency, which inspired researchers to incorporate problem-solving efficiency as an evaluation criterion of SRL processes.
- Published
- 2024
- Full Text
- View/download PDF
6. Multi-agent cooperation through learning-aware policy gradients
- Author
-
Meulemans, Alexander, Kobayashi, Seijin, von Oswald, Johannes, Scherrer, Nino, Elmoznino, Eric, Richards, Blake, Lajoie, Guillaume, Arcas, Blaise Agüera y, and Sacramento, João
- Subjects
Computer Science - Artificial Intelligence - Abstract
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning. How can we achieve cooperation among self-interested, independent learning agents? Promising recent work has shown that in certain tasks cooperation can be established between learning-aware agents who model the learning dynamics of each other. Here, we present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning, which takes into account that other agents are themselves learning through trial and error based on multiple noisy trials. We then leverage efficient sequence models to condition behavior on long observation histories that contain traces of the learning dynamics of other agents. Training long-context policies with our algorithm leads to cooperative behavior and high returns on standard social dilemmas, including a challenging environment where temporally-extended action coordination is required. Finally, we derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
- Published
- 2024
7. A Complexity-Based Theory of Compositionality
- Author
-
Elmoznino, Eric, Jiralerspong, Thomas, Bengio, Yoshua, and Lajoie, Guillaume
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Compositionality is believed to be fundamental to intelligence. In humans, it underlies the structure of thought, language, and higher-level reasoning. In AI, compositional representations can enable a powerful form of out-of-distribution generalization, in which a model systematically adapts to novel combinations of known concepts. However, while we have strong intuitions about what compositionality is, there currently exists no formal definition for it that is measurable and mathematical. Here, we propose such a definition, which we call representational compositionality, that accounts for and extends our intuitions about compositionality. The definition is conceptually simple, quantitative, grounded in algorithmic information theory, and applicable to any representation. Intuitively, representational compositionality states that a compositional representation satisfies three properties. First, it must be expressive. Second, it must be possible to re-describe the representation as a function of discrete symbolic sequences with re-combinable parts, analogous to sentences in natural language. Third, the function that relates these symbolic sequences to the representation, analogous to semantics in natural language, must be simple. Through experiments on both synthetic and real world data, we validate our definition of compositionality and show how it unifies disparate intuitions from across the literature in both AI and cognitive science. We also show that representational compositionality, while theoretically intractable, can be readily estimated using standard deep learning tools. Our definition has the potential to inspire the design of novel, theoretically-driven models that better capture the mechanisms of compositional thought.
- Published
- 2024
8. In-context learning and Occam's razor
- Author
-
Elmoznino, Eric, Marty, Tom, Kasetty, Tejas, Gagnon, Leo, Mittal, Sarthak, Fathi, Mahan, Sridhar, Dhanya, and Lajoie, Guillaume
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
A central goal of machine learning is generalization. While the No Free Lunch Theorem states that we cannot obtain theoretical guarantees for generalization without further assumptions, in practice we observe that simple models which explain the training data generalize best: a principle called Occam's razor. Despite the need for simple models, most current approaches in machine learning only minimize the training error, and at best indirectly promote simplicity through regularization or architecture design. Here, we draw a connection between Occam's razor and in-context learning: an emergent ability of certain sequence models like Transformers to learn at inference time from past observations in a sequence. In particular, we show that the next-token prediction loss used to train in-context learners is directly equivalent to a data compression technique called prequential coding, and that minimizing this loss amounts to jointly minimizing both the training error and the complexity of the model that was implicitly learned from context. Our theory and the empirical experiments we use to support it not only provide a normative account of in-context learning, but also elucidate the shortcomings of current in-context learning methods, suggesting ways in which they can be improved. We make our code available at https://github.com/3rdCore/PrequentialCode.
- Published
- 2024
9. Latent Representation Learning for Multimodal Brain Activity Translation
- Author
-
Afrasiyabi, Arman, Bhaskar, Dhananjay, Busch, Erica L., Caplette, Laurent, Singh, Rahul, Lajoie, Guillaume, Turk-Browne, Nicholas B., and Krishnaswamy, Smita
- Subjects
Computer Science - Machine Learning ,Quantitative Biology - Neurons and Cognition - Abstract
Neuroscience employs diverse neuroimaging techniques, each offering distinct insights into brain activity, from electrophysiological recordings such as EEG, which have high temporal resolution, to hemodynamic modalities such as fMRI, which have increased spatial precision. However, integrating these heterogeneous data sources remains a challenge, which limits a comprehensive understanding of brain function. We present the Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA) framework, which bridges the spatial and temporal resolution gaps across modalities by learning a unified latent space free of modality-specific biases. SAMBA introduces a novel attention-based wavelet decomposition for spectral filtering of electrophysiological recordings, graph attention networks to model functional connectivity between functional brain units, and recurrent layers to capture temporal autocorrelations in brain signal. We show that the training of SAMBA, aside from achieving translation, also learns a rich representation of brain information processing. We showcase this classify external stimuli driving brain activity from the representation learned in hidden layers of SAMBA, paving the way for broad downstream applications in neuroscience research and clinical contexts.
- Published
- 2024
10. Frequency-based View Selection in Gaussian Splatting Reconstruction
- Author
-
Li, Monica M. Q., Lajoie, Pierre-Yves, and Beltrame, Giovanni
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Robotics - Abstract
Three-dimensional reconstruction is a fundamental problem in robotics perception. We examine the problem of active view selection to perform 3D Gaussian Splatting reconstructions with as few input images as possible. Although 3D Gaussian Splatting has made significant progress in image rendering and 3D reconstruction, the quality of the reconstruction is strongly impacted by the selection of 2D images and the estimation of camera poses through Structure-from-Motion (SfM) algorithms. Current methods to select views that rely on uncertainties from occlusions, depth ambiguities, or neural network predictions directly are insufficient to handle the issue and struggle to generalize to new scenes. By ranking the potential views in the frequency domain, we are able to effectively estimate the potential information gain of new viewpoints without ground truth data. By overcoming current constraints on model architecture and efficacy, our method achieves state-of-the-art results in view selection, demonstrating its potential for efficient image-based 3D reconstruction., Comment: 8 pages, 4 figures
- Published
- 2024
11. Measurement of elliptic flow of J$/\psi$ in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions at forward rapidity
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Alfred, M., Antsupov, S., Aoki, K., Apadula, N., Asano, H., Ayuso, C., Azmoun, B., Babintsev, V., Bai, M., Bandara, N. S., Bannier, B., Bannikov, E., Barish, K. N., Bathe, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Boer, M., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Bumazhnov, V., Butler, C., Campbell, S., Roman, V. Canoa, Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Chujo, T., Citron, Z., Connors, M., Corliss, R., Csanád, M., Csörgő, T., Liu, L. D., Danley, T. W., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dion, A., Diss, P. B., Doomra, V., Do, J. H., Drees, A., Drees, K. A., Dumancic, M., Durham, J. M., Durum, A., Elder, T., Enokizono, A., Esha, R., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukuda, Y., Gallus, P., Gal, C., Garg, P., Ge, H., Giordano, F., Glenn, A., Goto, Y., Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Hemmick, T. K., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ito, Y., Ivanishchev, D., Jacak, B., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Jorjadze, V., Jouan, D., Jumper, D. S., Kanda, S., Kang, J. H., Kapukchyan, D., Karthas, S., Kawall, D., Kazantsev, A. V., Key, J. A., Khachatryan, V., Khanzadeev, A., Kimelman, B., Kim, C., Kim, D. J., Kim, E. -J., Kim, G. W., Kim, M., Kim, M. H., Kincses, D., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Komkov, B., Kotov, D., Kovacs, L., Kudo, S., Kurita, K., Kurosawa, M., Kwon, Y., Lajoie, J. G., Lallow, E. O., Lebedev, A., Lee, S., Lee, S. H., Leitch, M. J., Leung, Y. H., Lewis, N. A., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Lökös, S., Loomis, D. A., Lynch, D., Majoros, T., Makdisi, Y. I., Makek, M., Malaev, M., Manion, A., Manko, V. I., Mannel, E., Masuda, H., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Mignerey, A. C., Mihalik, D. E., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Mohanty, A. K., Montuenga, P., Moon, T., Morrison, D. P., Morrow, S. I., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagai, K., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakano, K., Nattrass, C., Netrakanti, P. K., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novotny, R., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, J. S., Park, S., Patel, M., Pate, S. F., Peng, J. -C., Peng, W., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Pun, A., Purschke, M. L., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Rolnick, S. D., Rosati, M., Rowan, Z., Rubin, J. G., Runchey, J., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, K., Sato, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seidl, R., Seleznev, A., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stepanov, M., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Syed, S., Sziklai, J., Takeda, A., Taketani, A., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Vazquez-Carson, S., Velkovska, J., Virius, M., Vrba, V., Wang, X. R., Wang, Z., Watanabe, Y., Watanabe, Y. S., Wei, F., White, A. S., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yanovich, A., Yin, P., Yoon, I., Yoo, J. H., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
We report the first measurement of the azimuthal anisotropy of J$/\psi$ at forward rapidity ($1.2<|\eta|<2.2$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV at the Relativistic Heavy Ion Collider. The data were collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The second Fourier coefficient ($v_2$) of the azimuthal distribution of $J/\psi$ is determined as a function of the transverse momentum ($p_T$) using the event-plane method. The measurements were performed for several selections of collision centrality: 0\%--50\%, 10\%--60\%, and 10\%-40\%. We find that in all cases the values of $v_2(p_T)$, which quantify the elliptic flow of J$/\psi$, are consistent with zero. The results are consistent with measurements at midrapidity, indicating no significant elliptic flow of the J$/\psi$ within the quark-gluon-plasma medium at collision energies of $\sqrt{s_{_{NN}}}=200$ GeV., Comment: 369 authors from 72 institutions, 12 pages, 7 figures, 5 tables. v1 is version submitted to Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
12. Measurements at forward rapidity of elliptic flow of charged hadrons and open-heavy-flavor muons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Alfred, M., Antsupov, S., Aoki, K., Apadula, N., Asano, H., Ayuso, C., Azmoun, B., Babintsev, V., Bai, M., Bandara, N. S., Bannier, B., Bannikov, E., Barish, K. N., Bathe, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Boer, M., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Bumazhnov, V., Butler, C., Campbell, S., Roman, V. Canoa, Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Chujo, T., Citron, Z., Connors, M., Corliss, R., Csanád, M., Csörgő, T., Liu, L. D., Danley, T. W., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dion, A., Diss, P. B., Doomra, V., Do, J. H., Drees, A., Drees, K. A., Dumancic, M., Durham, J. M., Durum, A., Elder, T., Enokizono, A., Esha, R., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukuda, Y., Gallus, P., Gal, C., Garg, P., Ge, H., Giordano, F., Glenn, A., Goto, Y., Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Hemmick, T. K., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ito, Y., Ivanishchev, D., Jacak, B., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Jorjadze, V., Jouan, D., Jumper, D. S., Kanda, S., Kang, J. H., Kapukchyan, D., Karthas, S., Kawall, D., Kazantsev, A. V., Key, J. A., Khachatryan, V., Khanzadeev, A., Kimelman, B., Kim, C., Kim, D. J., Kim, E. -J., Kim, G. W., Kim, M., Kim, M. H., Kincses, D., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Komkov, B., Kotov, D., Kovacs, L., Kudo, S., Kurita, K., Kurosawa, M., Kwon, Y., Lajoie, J. G., Lallow, E. O., Lebedev, A., Lee, S., Lee, S. H., Leitch, M. J., Leung, Y. H., Lewis, N. A., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Lökös, S., Loomis, D. A., Lynch, D., Majoros, T., Makdisi, Y. I., Makek, M., Malaev, M., Manion, A., Manko, V. I., Mannel, E., Masuda, H., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Mignerey, A. C., Mihalik, D. E., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Mohanty, A. K., Montuenga, P., Moon, T., Morrison, D. P., Morrow, S. I., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagai, K., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakano, K., Nattrass, C., Netrakanti, P. K., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novotny, R., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, J. S., Park, S., Patel, M., Pate, S. F., Peng, J. -C., Peng, W., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Pun, A., Purschke, M. L., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Rolnick, S. D., Rosati, M., Rowan, Z., Rubin, J. G., Runchey, J., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, K., Sato, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seidl, R., Seleznev, A., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stepanov, M., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Syed, S., Sziklai, J., Takeda, A., Taketani, A., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Vazquez-Carson, S., Velkovska, J., Virius, M., Vrba, V., Wang, X. R., Wang, Z., Watanabe, Y., Watanabe, Y. S., Wei, F., White, A. S., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yanovich, A., Yin, P., Yoon, I., Yoo, J. H., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
We present the first forward-rapidity measurements of elliptic anisotropy of open-heavy-flavor muons at the BNL Relativistic Heavy Ion Collider. The measurements are based on data samples of Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The measurements are performed in the pseudorapidity range $1.2<|\eta|<2$ and cover transverse momenta $1
- Published
- 2024
13. Accelerating Training with Neuron Interaction and Nowcasting Networks
- Author
-
Knyazev, Boris, Moudgil, Abhinav, Lajoie, Guillaume, Belilovsky, Eugene, and Lacoste-Julien, Simon
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Statistics - Machine Learning - Abstract
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks., Comment: added Llama3-based results and other updates, code is https://github.com/SamsungSAILMontreal/nino
- Published
- 2024
14. Multiplicity dependent $J/\psi$ and $\psi(2S)$ production at forward and backward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Aidala, C., Akiba, Y., Alfred, M., Andrieux, V., Antsupov, S., Apadula, N., Asano, H., Azmoun, B., Babintsev, V., Bandara, N. S., Bannikov, E., Barish, K. N., Bathe, S., Bazilevsky, A., Beaumier, M., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Brooks, M. L., Bryslawskyj, J., Bumazhnov, V., Campbell, S., Cervantes, R., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Citron, Z., Connors, M., Corliss, R., Cronin, N., Csanád, M., Csörgő, T., Danley, T. W., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dion, A., Dixit, D., Doomra, V., Do, J. H., Drees, A., Drees, K. A., Durham, J. M., Durum, A., En'yo, H., Enokizono, A., Esha, R., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukuda, Y., Gallus, P., Gal, C., Garg, P., Ge, H., Giordano, F., Goto, Y., Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Guragain, H., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Hasegawa, S., Haseler, T. O. S., Hemmick, T. K., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Imai, K., Inaba, M., Iordanova, A., Isenhower, D., Ivanishchev, D., Jacak, B., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Jouan, D., Jumper, D. S., Kang, J. H., Kapukchyan, D., Karthas, S., Kawall, D., Kazantsev, A. V., Khachatryan, V., Khanzadeev, A., Kim, C., Kim, E. -J., Kim, M., Kincses, D., Kistenev, E., Klatsky, J., Kline, P., Koblesky, T., Kotov, D., Kovacs, L., Kudo, S., Kurita, K., Kwon, Y., Lajoie, J. G., Lebedev, A., Lee, S., Leitch, M. J., Leung, Y. H., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Lökös, S., Loomis, D. A., Lovasz, K., Lynch, D., Majoros, T., Makdisi, Y. I., Makek, M., Manko, V. I., Mannel, E., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Mendoza, M., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Montuenga, P., Moon, T., Morrison, D. P., Mulilo, B., Murakami, T., Murata, J., Nagai, K., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakano, K., Nattrass, C., Niida, T., Nouicer, R., Novitzky, N., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ottino, G. J., Ozawa, K., Pantuev, V., Papavassiliou, V., Park, J. S., Park, S., Patel, M., Pate, S. F., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pisani, R. P., Potekhin, M., Purschke, M. L., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Rolnick, S. D., Rosati, M., Rowan, Z., Safonov, A. S., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seidl, R., Seleznev, A., Sen, A., Seto, R., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shioya, T., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Sziklai, J., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Tarnai, G., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Towell, C. L., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Velkovska, J., Virius, M., Vrba, V., Vukman, N., Wang, X. R., Watanabe, Y. S., Woody, C. L., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yamamoto, H., Yanovich, A., Yoon, I., Yoo, J. H., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., and Zou, L.
- Subjects
High Energy Physics - Experiment - Abstract
The $J/\psi$ and $\psi(2S)$ charmonium states, composed of $c\bar{c}$ quark pairs and known since the 1970s, are widely believed to serve as ideal probes to test quantum chromodynamics in high-energy hadronic interactions. However, there is not yet a complete understanding of the charmonium-production mechanism. Recent measurements of $J/\psi$ production as a function of event charged-particle multiplicity at the collision energies of both the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) show enhanced $J/\psi$ production yields with increasing multiplicity. One potential explanation for this type of dependence is multiparton interactions (MPI). We carry out the first measurements of self-normalized $J/\psi$ yields and the $\psi(2S)$ to $J/\psi$ ratio at both forward and backward rapidities as a function of self-normalized charged-particle multiplicity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. In addition, detailed {\sc pythia} studies tuned to RHIC energies were performed to investigate the MPI impacts. We find that the PHENIX data at RHIC are consistent with recent LHC measurements and can only be described by {\sc pythia} calculations that include MPI effects. The forward and backward $\psi(2S)$ to $J/\psi$ ratio, which serves as a unique and powerful approach to study final-state effects on charmonium production, is found to be less dependent on the charged-particle multiplicity., Comment: 301 authors from 69 institutions, 8 pages, 3 figures. v1 is version submitted to Physical Review D Letters. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
15. Retrospective Seroprevalence of Orthopoxvirus Antibodies among Key Populations, Kenya.
- Author
-
Loeb, Kristi, Milner, Kieran, Lemaille, Candice, Martens, Brielle, Stein, Derek, Lajoie, Julie, Shaw, Souradet, Rimoin, Anne, Mbala-Kingebeni, Placide, Hoff, Nicole, Noyce, Ryan, Fowke, Keith, Kimani, Joshua, McKinnon, Lyle, and Kindrachuk, Jason
- Subjects
Kenya ,antibodies ,orthopoxvirus ,seroprevalence ,sexually transmitted infections ,viruses ,zoonoses ,Humans ,Kenya ,Seroepidemiologic Studies ,Male ,Antibodies ,Viral ,Retrospective Studies ,Adult ,Orthopoxvirus ,Female ,Poxviridae Infections ,Young Adult ,Middle Aged ,Adolescent - Abstract
We identified a cluster of mpox exposures among key populations in Kenya through retrospective serologic screening. We identified strong seropositivity among sex workers and gay, bisexual, and other men who have sex with men. These findings demonstrate the need for increased mpox surveillance among mpox-endemic and mpox-endemic-adjacent regions in Africa.
- Published
- 2024
16. Measurement of inclusive jet cross section and substructure in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Alexander, J., Alfred, M., Andrieux, V., Antsupov, S., Aoki, K., Apadula, N., Asano, H., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bai, X., Bandara, N. S., Bannier, B., Bannikov, E., Barish, K. N., Bathe, S., Baublis, V., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Black, D., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Cervantes, R., Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choi, S., Christiansen, P., Chujo, T., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Corliss, R., Cronin, N., Crossette, N., Csanád, M., Csörgő, T., D'Orazio, L., Danley, T. W., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Ding, L., Dion, A., Dixit, D., Doomra, V., Do, J. H., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., En'yo, H., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fukuda, Y., Fusayasu, T., Gainey, K., Gallus, P., Gal, C., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Guragain, H., Gu, Y., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Hayano, R., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Ichihara, T., Ikeda, Y., Imai, K., Imazu, Y., Inaba, M., Iordanova, A., Isenhower, D., Isinhue, A., Ivanishchev, D., Jeon, S. J., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kanda, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapukchyan, D., Kapustinsky, J., Karthas, S., Kawall, D., Kazantsev, A. V., Key, J. A., Khachatryan, V., Khandai, P. K., Khanzadeev, A., Kijima, K. M., Kim, C., Kim, D. J., Kim, E. -J., Kim, M., Kim, Y. -J., Kim, Y. K., Kincses, D., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Kofarago, M., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Kovacs, L., Krizek, F., Kudo, S., Kurita, K., Kurosawa, M., Kwon, Y., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, D. M., Lee, G. H., Lee, J., Lee, K. B., Lee, K. S., Lee, S., Lee, S. H., Leitch, M. J., Leitgab, M., Leung, Y. H., Lewis, B., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Lokos, S., Loomis, D. A., Lovasz, K., Lynch, D., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, T., Morrison, D. P., Moskowitz, M., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagai, K., Nagamiya, S., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Netrakanti, P. K., Nihashi, M., Niida, T., Nouicer, R., Novitzky, N., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Oide, H., Okada, K., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ottino, G. J., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, I. H., Park, J. S., Park, S., Park, S. K., Patel, L., Patel, M., Pate, S. F., Peng, J. -C., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pisani, R. P., Potekhin, M., Purschke, M. L., Qu, H., Rak, J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Riveli, N., Roach, D., Rolnick, S. D., Rosati, M., Rowan, Z., Ryu, M. S., Safonov, A. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, S., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Sekiguchi, Y., Seleznev, A., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shaver, A., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shioya, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, C. P., Singh, V., Skolnik, M., Slunečka, M., Smith, K. L., Snowball, M., Solano, S., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Steinberg, P., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Stone, M. R., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Sziklai, J., Takahara, A., Taketani, A., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tennant, E., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Torii, H., Towell, C. L., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Virius, M., Vrba, V., Vukman, N., Vznuzdaev, E., Vértesi, R., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Whitaker, S., Wolin, S., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yamamoto, H., Yanovich, A., Yokkaichi, S., Yoon, I., Yoo, J. H., Younus, I., You, Z., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0
- Published
- 2024
17. When can transformers compositionally generalize in-context?
- Author
-
Kobayashi, Seijin, Schug, Simon, Akram, Yassir, Redhardt, Florian, von Oswald, Johannes, Pascanu, Razvan, Lajoie, Guillaume, and Sacramento, João
- Subjects
Computer Science - Machine Learning ,Computer Science - Neural and Evolutionary Computing - Abstract
Many tasks can be composed from a few independent components. This gives rise to a combinatorial explosion of possible tasks, only some of which might be encountered during training. Under what circumstances can transformers compositionally generalize from a subset of tasks to all possible combinations of tasks that share similar components? Here we study a modular multitask setting that allows us to precisely control compositional structure in the data generation process. We present evidence that transformers learning in-context struggle to generalize compositionally on this task despite being in principle expressive enough to do so. Compositional generalization becomes possible only when introducing a bottleneck that enforces an explicit separation between task inference and task execution., Comment: ICML 2024 workshop on Next Generation of Sequence Modeling Architectures
- Published
- 2024
18. Centrality dependence of L\'evy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Ta'ani, H., Alexander, J., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bannier, B., Barish, K. N., Bassalleck, B., Bathe, S., Baublis, V., Baumgart, S., Bazilevsky, A., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Castera, P., Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Corliss, R., Csanád, M., Csörgő, T., D'Orazio, L., Dairaku, S., Datta, A., Daugherity, M. S., David, G., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Donadelli, M., Doomra, V., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Edwards, S., Efremenko, Y. V., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Garishvili, A., Garishvili, I., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Guo, T., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hanks, J., Hashimoto, K., Haslum, E., Hayano, R., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Ichihara, T., Iinuma, H., Ikeda, Y., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Issah, M., Ivanishchev, D., Jacak, B. V., Javani, M., Jiang, X., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kasza, G., Kawall, D., Kazantsev, A. V., Kempel, T., Khanzadeev, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. J., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, Y. -J., Kim, Y. K., Kinney, E., Kiss, Á., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Komatsu, Y., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Kovacs, L., Krizek, F., Král, A., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lewis, B., Lim, S. H., Levy, L. A. Linden, Liu, M. X., Lökös, S., Loomis, D. A., Love, B., Maguire, C. F., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., Masumoto, S., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Nihashi, M., Nouicer, R., Novák, T., Novitzky, N., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Okada, K., Orosz, M., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J. S., Park, S., Park, S. K., Patel, L., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Peressounko, D. Yu., Petti, R., Pinkenburg, C., Pisani, R. P., Potekhin, M., Proissl, M., Purschke, M. L., Qu, H., Rak, J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Sahlmueller, B., Saito, N., Sakaguchi, T., Samsonov, V., Sano, M., Sarsour, M., Sawada, S., Sedgwick, K., Seidl, R., Sen, A., Seto, R., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sun, J., Sun, Z., Sziklai, J., Takagui, E. M., Takahara, A., Taketani, A., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tennant, E., Themann, H., Todoroki, T., Tomášek, L., Tomášek, M., Torii, H., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Ujvari, B., Vale, C., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Vértesi, R., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., White, S. N., Winter, D., Wolin, S., Woody, C. L., Wysocki, M., Xia, B., Yamaguchi, Y. L., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Younus, I., You, Z., Yushmanov, I. E., Zajc, W. A., and Zelenski, A.
- Subjects
Nuclear Experiment - Abstract
The PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in $\sqrt{s_{_{NN}}}=200$~GeV Au$+$Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by L\'evy-stable source distributions. The extracted source parameters are the correlation-strength parameter $\lambda$, the L\'evy index of stability $\alpha$, and the L\'evy-scale parameter $R$ as a function of transverse mass $m_T$ and centrality. The $\lambda(m_T)$ parameter is constant at larger values of $m_T$, but decreases as $m_T$ decreases. The L\'evy scale parameter $R(m_T)$ decreases with $m_T$ and exhibits proportionality to the length scale of the nuclear overlap region. The L\'evy exponent $\alpha(m_T)$ is independent of $m_T$ within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the L\'evy exponent $\alpha$ is significantly different from that of Gaussian ($\alpha=2$) or Cauchy ($\alpha=1$) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50%-60%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the $\eta'$ meson is included. In each centrality class, the best value of the in-medium $\eta'$ mass is compared to the mass of the $\eta$ meson, as well as to several theoretical predictions that consider restoration of $U_A(1)$ symmetry in hot hadronic matter., Comment: 401 authors from 75 institutions, 23 pages, 15 figures, 2 tables. v2 is version accepted for publication by Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
19. Expressivity of Neural Networks with Random Weights and Learned Biases
- Author
-
Williams, Ezekiel, Ryoo, Avery Hee-Woon, Jiralerspong, Thomas, Payeur, Alexandre, Perich, Matthew G., Mazzucato, Luca, and Lajoie, Guillaume
- Subjects
Computer Science - Neural and Evolutionary Computing ,Quantitative Biology - Neurons and Cognition ,Statistics - Machine Learning - Abstract
Landmark universal function approximation results for neural networks with trained weights and biases provided impetus for the ubiquitous use of neural networks as learning models in Artificial Intelligence (AI) and neuroscience. Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters, for example the output weights, within randomly initialized networks. Motivated by the fact that biases can be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks, such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks with random weights where only biases are optimized. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only. We further show that an equivalent result holds for recurrent neural networks predicting dynamical system trajectories. Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on multi-task methods such as bias fine-tuning and unit masking., Comment: change to article metadata only: author name typo correction
- Published
- 2024
20. Jet modification via $\pi^0$-hadron correlations in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Bataineh, H., Alexander, J., Alfred, M., Aoki, K., Apadula, N., Aphecetche, L., Asai, J., Asano, H., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Bandara, N. S., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Baumann, C., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Bickley, A. A., Blankenship, B., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Bunce, G., Butsyk, S., Camacho, C. M., Campbell, S., Chang, B. S., Chang, W. C., Charvet, J. L., Chen, C. -H., Chen, D., Chernichenko, S., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choudhury, R. K., Chujo, T., Chung, P., Churyn, A., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Constantin, P., Corliss, R., Csanád, M., Csörgő, T., d'Enterria, D., Dahms, T., Dairaku, S., Danley, T. W., Das, K., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dietzsch, O., Dion, A., Diss, P. B., Donadelli, M., Doomra, V., Do, J. H., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Efremenko, Y. V., Ellinghaus, F., En'yo, H., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fusayasu, T., Gallus, P., Gal, C., Garg, P., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, H., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, R., Han, S. Y., Hartouni, E. P., Haruna, K., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., Heffner, M., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hodges, A., Hohlmann, M., Hollis, R. S., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Jacak, B. V., Jezghani, M., Jiang, X., Jin, J., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kang, J. H., Kapustinsky, J., Kawall, D., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kimelman, B., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, M., Kim, S. H., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kitamura, R., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Komkov, B., Konno, M., Koster, J., Kotov, D., Kovacs, L., Kozlov, A., Kravitz, A., Král, A., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lai, Y. S., Lajoie, J. G., Layton, D., Lebedev, A., Lee, D. M., Lee, K. B., Lee, S., Lee, S. H., Lee, T., Leitch, M. J., Leite, M. A. L., Lenzi, B., Liebing, P., Lim, S. H., Litvinenko, A., Liu, H., Liu, M. X., Liška, T., Li, X., Lokos, S., Loomis, D. A., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Masui, H., Matathias, F., Mašek, L., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mignerey, A. C., Mikeš, P., Miki, K., Milov, A., Mishra, D. K., Mishra, M., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Miyasaka, S., Mizuno, S., Mohanty, A. K., Montuenga, P., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Moukhanova, T. V., Mukhopadhyay, D., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagamiya, S., Nagashima, K., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, T., Nakano, K., Nattrass, C., Netrakanti, P. K., Newby, J., Nguyen, M., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Oda, S. X., Ogilvie, C. A., Okada, K., Oka, M., Onuki, Y., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, J., Park, J. S., Park, S., Park, W. J., Patel, M., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Purschke, M. L., Purwar, A. K., Qu, H., Rakotozafindrabe, A., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Rembeczki, S., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Rykov, V. L., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sako, H., Samsonov, V., Sarsour, M., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Sziklai, J., Takagui, E. M., Taketani, A., Tanabe, R., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Themann, H., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tomita, Y., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Ujvari, B., Vale, C., Valle, H., van Hecke, H. W., Veicht, A., Velkovska, J., Vinogradov, A. A., Virius, M., Vrba, V., Vznuzdaev, E., Vértesi, R., Wang, X. R., Watanabe, Y., Watanabe, Y. S., Wei, F., Wessels, J., White, A. S., White, S. N., Winter, D., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Yoon, I., Yoo, J. H., Young, G. R., Younus, I., Yushmanov, I. E., Yu, H., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zhou, S., Zolin, L., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects., Comment: 535 authors from 84 institutions, 12 pages, 8 figures. v2 is version accepted for publication in Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
- Full Text
- View/download PDF
21. Unraveling “Feeling Bad” in a Non-Western Culture: Achievement Emotions in Japanese Medical Students
- Author
-
Nomura, Osamu, Sunohara, Momoka, Akatsu, Haruko, Wiseman, Jeffrey, and Lajoie, Susanne P.
- Published
- 2025
- Full Text
- View/download PDF
22. The role of leadership in medical trainee team-regulation dynamics in crisis resource management simulation education: The role of leadership in medical trainee team-regulation dynamics in crisis resource management (CRM) simulation education
- Author
-
Moreno, Matthew, Patino-Melo, Lucia, Grewal, Keerat, Pekrun, Reinhard, Lajoie, Susanne, Hadwin, Allyson, Wiseman, Jeffrey, Brydges, Ryan, Fried, Gerald M., Sun, Ning-Zi, Khalil, Elene, Azher, Sayed, and Harley, Jason M.
- Published
- 2025
- Full Text
- View/download PDF
23. Does learning the right latent variables necessarily improve in-context learning?
- Author
-
Mittal, Sarthak, Elmoznino, Eric, Gagnon, Leo, Bhardwaj, Sangnie, Sridhar, Dhanya, and Lajoie, Guillaume
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Large autoregressive models like Transformers can solve tasks through in-context learning (ICL) without learning new weights, suggesting avenues for efficiently solving new tasks. For many tasks, e.g., linear regression, the data factorizes: examples are independent given a task latent that generates the data, e.g., linear coefficients. While an optimal predictor leverages this factorization by inferring task latents, it is unclear if Transformers implicitly do so or if they instead exploit heuristics and statistical shortcuts enabled by attention layers. Both scenarios have inspired active ongoing work. In this paper, we systematically investigate the effect of explicitly inferring task latents. We minimally modify the Transformer architecture with a bottleneck designed to prevent shortcuts in favor of more structured solutions, and then compare performance against standard Transformers across various ICL tasks. Contrary to intuition and some recent works, we find little discernible difference between the two; biasing towards task-relevant latent variables does not lead to better out-of-distribution performance, in general. Curiously, we find that while the bottleneck effectively learns to extract latent task variables from context, downstream processing struggles to utilize them for robust prediction. Our study highlights the intrinsic limitations of Transformers in achieving structured ICL solutions that generalize, and shows that while inferring the right latents aids interpretability, it is not sufficient to alleviate this problem.
- Published
- 2024
24. Hierarchies define the scalability of robot swarms
- Author
-
Varadharajan, Vivek Shankar, Soma, Karthik, Dyanatkar, Sepand, Lajoie, Pierre-Yves, and Beltrame, Giovanni
- Subjects
Computer Science - Robotics - Abstract
The emerging behaviors of swarms have fascinated scientists and gathered significant interest in the field of robotics. Traditionally, swarms are viewed as egalitarian, with robots sharing identical roles and capabilities. However, recent findings highlight the importance of hierarchy for deploying robot swarms more effectively in diverse scenarios. Despite nature's preference for hierarchies, the robotics field has clung to the egalitarian model, partly due to a lack of empirical evidence for the conditions favoring hierarchies. Our research demonstrates that while egalitarian swarms excel in environments proportionate to their collective sensing abilities, they struggle in larger or more complex settings. Hierarchical swarms, conversely, extend their sensing reach efficiently, proving successful in larger, more unstructured environments with fewer resources. We validated these concepts through simulations and physical robot experiments, using a complex radiation cleanup task. This study paves the way for developing adaptable, hierarchical swarm systems applicable in areas like planetary exploration and autonomous vehicles. Moreover, these insights could deepen our understanding of hierarchical structures in biological organisms., Comment: 31 Pages, 7 Figures. Supplementary material attached to the paper
- Published
- 2024
25. A chemical probe to modulate human GID4 Pro/N-degron interactions
- Author
-
Owens, Dominic D. G., Maitland, Matthew E. R., Khalili Yazdi, Aliakbar, Song, Xiaosheng, Reber, Viviane, Schwalm, Martin P., Machado, Raquel A. C., Bauer, Nicolas, Wang, Xu, Szewczyk, Magdalena M., Dong, Cheng, Dong, Aiping, Loppnau, Peter, Calabrese, Matthew F., Dowling, Matthew S., Lee, Jisun, Montgomery, Justin I., O’Connell, Thomas N., Subramanyam, Chakrapani, Wang, Feng, Adamson, Ella C., Schapira, Matthieu, Gstaiger, Matthias, Knapp, Stefan, Vedadi, Masoud, Min, Jinrong, Lajoie, Gilles A., Barsyte-Lovejoy, Dalia, Owen, Dafydd R., Schild-Poulter, Caroline, and Arrowsmith, Cheryl H.
- Published
- 2024
- Full Text
- View/download PDF
26. Emotion regulation in teamwork during a challenging hackathon: Comparison of best and worst teams
- Author
-
Kazemitabar, Maedeh, Lajoie, Susanne P., and Doleck, Tenzin
- Published
- 2024
- Full Text
- View/download PDF
27. Examining the Role of Peer Acknowledgements on Social Annotations: Unraveling the Psychological Underpinnings
- Author
-
Huang, Xiaoshan, Wu, Haolun, Liu, Xue, and Lajoie, Susanne
- Subjects
Computer Science - Human-Computer Interaction - Abstract
This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.
- Published
- 2024
28. Formation and Study of a Spherical Plasma Liner for Plasma-Jet-Driven Magneto-Inertial Fusion
- Author
-
LaJoie, A. L., Chu, F., Brown, A., Langendorf, S., Dunn, J. P., Wurden, G. A., Witherspoon, F. D., Case, A., Luna, M., Cassibry, J., Vyas, A., and Gilmore, M.
- Subjects
Physics - Plasma Physics - Abstract
Plasma-jet-driven magneto-inertial fusion (PJMIF) is an alternative approach to controlled nuclear fusion which aims to utilize a line-replaceable dense plasma liner as a repetitive spherical compression driver. In this experiment, first measurements of the formation of a spherical Argon plasma liner formed from 36 discrete pulsed plasma jets are obtained on the Plasma Liner Experiment (PLX). Properties including liner uniformity and morphology, plasma density, temperature, and ram pressure are assessed as a function of time throughout the implosion process and indicate an apparent transition from initial kinetic inter-jet interpenetration to collisional regime near stagnation times, in accordance with theoretical expectation. A lack of primary shock structures between adjacent jets during flight implies that arbitrarily smooth liners may be formed by way of corresponding improvements in jet parameters and control. The measurements facilitate the benchmarking of computational models and understanding the scaling of plasma liners towards fusion-relevant energy density.
- Published
- 2024
29. Device-Free Human State Estimation using UWB Multi-Static Radios
- Author
-
Laham, Saria Al, Baghi, Bobak H., Lajoie, Pierre-Yves, Feriani, Amal, Herath, Sachini, Liu, Steve, and Dudek, Gregory
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Computers and Society ,Computer Science - Machine Learning ,Computer Science - Networking and Internet Architecture - Abstract
We present a human state estimation framework that allows us to estimate the location, and even the activities, of people in an indoor environment without the requirement that they carry a specific devices with them. To achieve this "device free" localization we use a small number of low-cost Ultra-Wide Band (UWB) sensors distributed across the environment of interest. To achieve high quality estimation from the UWB signals merely reflected of people in the environment, we exploit a deep network that can learn to make inferences. The hardware setup consists of commercial off-the-shelf (COTS) single antenna UWB modules for sensing, paired with Raspberry PI units for computational processing and data transfer. We make use of the channel impulse response (CIR) measurements from the UWB sensors to estimate the human state - comprised of location and activity - in a given area. Additionally, we can also estimate the number of humans that occupy this region of interest. In our approach, first, we pre-process the CIR data which involves meticulous aggregation of measurements and extraction of key statistics. Afterwards, we leverage a convolutional deep neural network to map the CIRs into precise location estimates with sub-30 cm accuracy. Similarly, we achieve accurate human activity recognition and occupancy counting results. We show that we can quickly fine-tune our model for new out-of-distribution users, a process that requires only a few minutes of data and a few epochs of training. Our results show that UWB is a promising solution for adaptable smart-home localization and activity recognition problems.
- Published
- 2023
30. Automated Estimation of Plasma Temperature and Density from Emission Spectroscopy
- Author
-
Oliver, Todd A., Michoski, Craig, Langendorf, Samuel, and LaJoie, Andrew
- Subjects
Physics - Plasma Physics - Abstract
This paper introduces a novel approach for automated estimation of plasma temperature and density using emission spectroscopy, integrating Bayesian inference with sophisticated physical models. We provide an in-depth examination of Bayesian methods applied to the complexities of plasma diagnostics, supported by a robust framework of physical and measurement models. Our methodology is validated through experimental observations, focusing on individual and sequential shot analyses. The results demonstrate the effectiveness of our approach in enhancing the accuracy and reliability of plasma parameter estimation, marking a significant advancement in the field of emission spectroscopy for plasma diagnostics. This study not only offers a new perspective in plasma analysis but also paves the way for further research and applications in nuclear instrumentation and related domains., Comment: 25 pages, 8 figures
- Published
- 2023
31. Identified charged-hadron production in $p$$+$Al, $^3$He$+$Au, and Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and in U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Alexander, J., Alfred, M., Andrieux, V., Aoki, K., Apadula, N., Asano, H., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bai, X., Bandara, N. S., Bannier, B., Barish, K. N., Bathe, S., Baublis, V., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Black, D., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Roman, V. Canoa, Cervantes, R., Chen, C. -H., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choi, S., Christiansen, P., Chujo, T., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Corliss, R., Morales, Y. Corrales, Cronin, N., Crossette, N., Csanád, M., Csörgő, T., D'Orazio, L., Danley, T. W., Datta, A., Daugherity, M. S., David, G., Dean, C. T., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Ding, L., Dion, A., Diss, P. B., Dixit, D., Doomra, V., Do, J. H., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., En'yo, H., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fukuda, Y., Fusayasu, T., Gainey, K., Gallus, P., Gal, C., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Giles, M., Giordano, F., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gu, Y., Gunji, T., Guo, T., Guragain, H., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Harvey, M., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Hayano, R., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Ichihara, T., Ikeda, Y., Imai, K., Imazu, Y., Inaba, M., Iordanova, A., Isenhower, D., Isinhue, A., Ivanishchev, D., Jacak, B. V., Jeon, S. J., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kanda, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapukchyan, D., Kapustinsky, J., Karthas, S., Kawall, D., Kazantsev, A. V., Key, J. A., Khachatryan, V., Khandai, P. K., Khanzadeev, A., Khatiwada, A., Kijima, K. M., Kimelman, B., Kim, C., Kim, D. J., Kim, E. -J., Kim, G. W., Kim, M., Kim, T., Kim, Y. -J., Kim, Y. K., Kincses, D., Kingan, A., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Kofarago, M., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Kovacs, L., Krizek, F., Kudo, S., Kurgyis, B., Kurita, K., Kurosawa, M., Kwon, Y., Lai, Y. S., Lajoie, J. G., Larionova, D., Lebedev, A., Lee, D. M., Lee, G. H., Lee, J., Lee, K. B., Lee, K. S., Lee, S., Lee, S. H., Leitch, M. J., Leitgab, M., Leung, Y. H., Lewis, B., Lewis, N. A., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Loomis, D. A., Lovasz, K., Lynch, D., Lökös, S., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Mondal, M. M., Montuenga, P., Moon, T., Morrison, D. P., Moskowitz, M., Moukhanova, T. V., Muhammad, A., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagai, K., Nagamiya, S., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nelson, S., Netrakanti, P. K., Nihashi, M., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Oh, J., Oide, H., Okada, K., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ottino, G. J., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, I. H., Park, J. S., Park, S., Park, S. K., Patel, L., Patel, M., Pate, S. F., Peng, J. -C., Peng, W., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Pun, A., Purschke, M. L., Qu, H., Radzevich, P. V., Rak, J., Ramasubramanian, N., Ramson, B. J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Riveli, N., Roach, D., Rolnick, S. D., Rosati, M., Rowan, Z., Rubin, J. G., Runchey, J., Ryu, M. S., Safonov, A. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, S., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Sekiguchi, Y., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shaver, A., Shein, I., Shibata, M., Shibata, T. -A., Shigaki, K., Shimomura, M., Shioya, T., Shi, Z., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, V., Skolnik, M., Slunečka, M., Smith, K. L., Snowball, M., Solano, S., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Steinberg, P., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Stone, M. R., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Sziklai, J., Takahama, R., Takahara, A., Taketani, A., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tennant, E., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Virius, M., Vrba, V., Vukman, N., Vznuzdaev, E., Vértesi, R., Wang, X. R., Wang, Z., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Whitaker, S., White, A. S., Wolin, S., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yamamoto, H., Yanovich, A., Yokkaichi, S., Yoon, I., Yoo, J. H., Younus, I., You, Z., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
The PHENIX experiment has performed a systematic study of identified charged-hadron ($\pi^\pm$, $K^\pm$, $p$, $\bar{p}$) production at midrapidity in $p$$+$Al, $^3$He$+$Au, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV. Identified charged-hadron invariant transverse-momentum ($p_T$) and transverse-mass ($m_T$) spectra are presented and interpreted in terms of radially expanding thermalized systems. The particle ratios of $K/\pi$ and $p/\pi$ have been measured in different centrality ranges of large (Cu$+$Au, U$+$U) and small ($p$$+$Al, $^3$He$+$Au) collision systems. The values of $K/\pi$ ratios measured in all considered collision systems were found to be consistent with those measured in $p$$+$$p$ collisions. However the values of $p/\pi$ ratios measured in large collision systems reach the values of $\approx0.6$, which is $\approx2$ times larger than in $p$$+$$p$ collisions. These results can be qualitatively understood in terms of the baryon enhancement expected from hadronization by recombination. Identified charged-hadron nuclear-modification factors ($R_{AB}$) are also presented. Enhancement of proton $R_{AB}$ values over meson $R_{AB}$ values was observed in central $^3$He$+$Au, Cu$+$Au, and U$+$U collisions. The proton $R_{AB}$ values measured in $p$$+$Al collision system were found to be consistent with $R_{AB}$ values of $\phi$, $\pi^\pm$, $K^\pm$, and $\pi^0$ mesons, which may indicate that the size of the system produced in $p$$+$Al collisions is too small for recombination to cause a noticeable increase in proton production., Comment: 480 authors from 78 institutions, 18 pages, 6 tables, 16 figures. v2 is version accepted for publication in Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2023
- Full Text
- View/download PDF
32. Interplay between β-propeller subunits WDR26 and muskelin regulates the CTLH E3 ligase supramolecular complex
- Author
-
Maitland, Matthew E. R., Onea, Gabriel, Owens, Dominic D. G., Gonga-Cavé, Brianna C., Wang, Xu, Arrowsmith, Cheryl H., Barsyte-Lovejoy, Dalia, Lajoie, Gilles A., and Schild-Poulter, Caroline
- Published
- 2024
- Full Text
- View/download PDF
33. Targeted proteomics of plasma extracellular vesicles uncovers MUC1 as combinatorial biomarker for the early detection of high-grade serous ovarian cancer
- Author
-
Cooper, Tyler T., Dieters-Castator, Dylan Z., Liu, Jiahui, Siegers, Gabrielle M., Pink, Desmond, Veliz, Lorena, Lewis, John D., Lagugné-Labarthet, François, Fu, Yangxin, Steed, Helen, Lajoie, Gilles A., and Postovit, Lynne-Marie
- Published
- 2024
- Full Text
- View/download PDF
34. Farnesyltransferase inhibition overcomes oncogene-addicted non-small cell lung cancer adaptive resistance to targeted therapies
- Author
-
Figarol, Sarah, Delahaye, Célia, Gence, Rémi, Doussine, Aurélia, Cerapio, Juan Pablo, Brachais, Mathylda, Tardy, Claudine, Béry, Nicolas, Asslan, Raghda, Colinge, Jacques, Villemin, Jean-Philippe, Maraver, Antonio, Ferrer, Irene, Paz-Ares, Luis, Kessler, Linda, Burrows, Francis, Lajoie-Mazenc, Isabelle, Dongay, Vincent, Morin, Clara, Florent, Amélie, Pagano, Sandra, Taranchon-Clermont, Estelle, Casanova, Anne, Pradines, Anne, Mazieres, Julien, Favre, Gilles, and Calvayrac, Olivier
- Published
- 2024
- Full Text
- View/download PDF
35. Using neural biomarkers to personalize dosing of vagus nerve stimulation
- Author
-
Berthon, Antonin, Wernisch, Lorenz, Stoukidi, Myrta, Thornton, Michael, Tessier-Lariviere, Olivier, Fortier-Poisson, Pascal, Mamen, Jorin, Pinkney, Max, Lee, Susannah, Sarkans, Elvijs, Annecchino, Luca, Appleton, Ben, Garsed, Philip, Patterson, Bret, Gonshaw, Samuel, Jakopec, Matjaz, Shunmugam, Sudhakaran, Edwards, Tristan, Tukiainen, Aleksi, Jennings, Joel, Lajoie, Guillaume, Hewage, Emil, and Armitage, Oliver
- Published
- 2024
- Full Text
- View/download PDF
36. The experience of caregiving for children with rare musculoskeletal conditions: a qualitative study in arthrogryposis multiplex congenita
- Author
-
Elekanachi, R. U., Lajoie, A., Tavukcu, S., Snider, L. M., and Dahan-Oliel, N.
- Published
- 2024
- Full Text
- View/download PDF
37. Unveiling emotion dynamics in problem-solving: a comprehensive analysis with an intelligent tutoring system using facial expressions and electrodermal activities
- Author
-
Zheng, Juan, Li, Shan, Wang, Tingting, and Lajoie, Susanne P.
- Published
- 2024
- Full Text
- View/download PDF
38. Connectome-based reservoir computing with the conn2res toolbox
- Author
-
Suárez, Laura E., Mihalik, Agoston, Milisav, Filip, Marshall, Kenji, Li, Mingze, Vértes, Petra E., Lajoie, Guillaume, and Misic, Bratislav
- Published
- 2024
- Full Text
- View/download PDF
39. A. Gérin-Lajoie. D’après ses mémoires de Henri-Raymond Casgrain. Critique d’une source hybride.
- Author
-
RETG, CÉCILE
- Abstract
Copyright of Revue d'Histoire de l'Amérique Française is the property of Institut d'histoire de l'Amerique francaise and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2017
- Full Text
- View/download PDF
40. Examining University Teachers' Self-Regulation in Using a Learning Analytics Dashboard for Online Collaboration
- Author
-
Lingyun Huang, Juan Zheng, Susanne P. Lajoie, Yuxin Chen, Cindy E. Hmelo-Silver, and Minhong Wang
- Abstract
Learning analytics dashboards (LADs) are often used to display real-time data indicating student learning trajectories and outcomes. Successful use of LADs requires teachers to orient their dashboard reviews with clear goals, apply appropriate strategies to interpret visualized information on LADs and monitor and evaluate their interpretations to meet goals. This process is known as self-regulated learning (SRL). Critical as it is, little research investigates teachers' SRL in LAD usage. The present study addressed the gap by examining teachers' SRL and sought to understand how teachers' SRL relates to their use of LADs. To this end, a case study was designed in which ten participants were invited to use a LAD for asynchronous online problem-based learning. Think-aloud techniques and process mining methods were applied. The findings show that teachers were cognitive regulation in the early stage of LAD usage and became more metacognitive regulated later. The comparison of SRL between the good and the weak regulators indicates that the good self-regulators enacted more monitoring and evaluation events. Thus their regulator pattern was more non-linear. The qualitative analysis of think-aloud protocols reveals that teachers with good SRL are more likely to use the LAD to diagnose issues in student learning and collaboration. The study highlights the importance of SRL for teachers' success in using LAD for data-driven instructions. The study also reinforces the importance of fostering teachers' SRL, which accounts for teachers' professional success in the digital era.
- Published
- 2024
- Full Text
- View/download PDF
41. Antoine Gérin-Lajoie: une jeunesse romantique et un idéal politique au cours des difficiles années de l'Union.
- Author
-
Gallichan, Gilles
- Subjects
HISTORY of Quebec (Province) ,PRACTICAL politics - Abstract
Copyright of Mens: Revue d'Histoire Intellectuelle et Culturelle is the property of MENS: Revue d'Histoire Intellectuelle et Culturelle and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2018
- Full Text
- View/download PDF
42. A Unified, Scalable Framework for Neural Population Decoding
- Author
-
Azabou, Mehdi, Arora, Vinam, Ganesh, Venkataramana, Mao, Ximeng, Nachimuthu, Santosh, Mendelson, Michael J., Richards, Blake, Perich, Matthew G., Lajoie, Guillaume, and Dyer, Eva L.
- Subjects
Computer Science - Machine Learning ,Quantitative Biology - Neurons and Cognition - Abstract
Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both model size and datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale., Comment: Accepted at NeurIPS 2023
- Published
- 2023
43. How connectivity structure shapes rich and lazy learning in neural circuits
- Author
-
Liu, Yuhan Helena, Baratin, Aristide, Cornford, Jonathan, Mihalas, Stefan, Shea-Brown, Eric, and Lajoie, Guillaume
- Subjects
Computer Science - Neural and Evolutionary Computing ,Computer Science - Artificial Intelligence ,Quantitative Biology - Neurons and Cognition - Abstract
In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting., Comment: Published at ICLR 2024
- Published
- 2023
44. Amortizing intractable inference in large language models
- Author
-
Hu, Edward J., Jain, Moksh, Elmoznino, Eric, Kaddar, Younesse, Lajoie, Guillaume, Bengio, Yoshua, and Malkin, Nikolay
- Subjects
Computer Science - Machine Learning ,Computer Science - Computation and Language - Abstract
Autoregressive large language models (LLMs) compress knowledge from their training data through next-token conditional distributions. This limits tractable querying of this knowledge to start-to-end autoregressive sampling. However, many tasks of interest -- including sequence continuation, infilling, and other forms of constrained generation -- involve sampling from intractable posterior distributions. We address this limitation by using amortized Bayesian inference to sample from these intractable posteriors. Such amortization is algorithmically achieved by fine-tuning LLMs via diversity-seeking reinforcement learning algorithms: generative flow networks (GFlowNets). We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training and reward-maximizing policy optimization. As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem and demonstrate that our approach enables data-efficient adaptation of LLMs to tasks that require multi-step rationalization and tool use., Comment: ICLR 2024; 23 pages; code: https://github.com/GFNOrg/gfn-lm-tuning
- Published
- 2023
45. Leveraging Unpaired Data for Vision-Language Generative Models via Cycle Consistency
- Author
-
Li, Tianhong, Bhardwaj, Sangnie, Tian, Yonglong, Zhang, Han, Barber, Jarred, Katabi, Dina, Lajoie, Guillaume, Chang, Huiwen, and Krishnan, Dilip
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Current vision-language generative models rely on expansive corpora of paired image-text data to attain optimal performance and generalization capabilities. However, automatically collecting such data (e.g. via large-scale web scraping) leads to low quality and poor image-text correlation, while human annotation is more accurate but requires significant manual effort and expense. We introduce $\textbf{ITIT}$ ($\textbf{I}$n$\textbf{T}$egrating $\textbf{I}$mage $\textbf{T}$ext): an innovative training paradigm grounded in the concept of cycle consistency which allows vision-language training on unpaired image and text data. ITIT is comprised of a joint image-text encoder with disjoint image and text decoders that enable bidirectional image-to-text and text-to-image generation in a single framework. During training, ITIT leverages a small set of paired image-text data to ensure its output matches the input reasonably well in both directions. Simultaneously, the model is also trained on much larger datasets containing only images or texts. This is achieved by enforcing cycle consistency between the original unpaired samples and the cycle-generated counterparts. For instance, it generates a caption for a given input image and then uses the caption to create an output image, and enforces similarity between the input and output images. Our experiments show that ITIT with unpaired datasets exhibits similar scaling behavior as using high-quality paired data. We demonstrate image generation and captioning performance on par with state-of-the-art text-to-image and image-to-text models with orders of magnitude fewer (only 3M) paired image-text data.
- Published
- 2023
46. Discrete, compositional, and symbolic representations through attractor dynamics
- Author
-
Nam, Andrew, Elmoznino, Eric, Malkin, Nikolay, McClelland, James, Bengio, Yoshua, and Lajoie, Guillaume
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Symbolic systems are powerful frameworks for modeling cognitive processes as they encapsulate the rules and relationships fundamental to many aspects of human reasoning and behavior. Central to these models are systematicity, compositionality, and productivity, making them invaluable in both cognitive science and artificial intelligence. However, certain limitations remain. For instance, the integration of structured symbolic processes and latent sub-symbolic processes has been implemented at the computational level through fiat methods such as quantization or softmax sampling, which assume, rather than derive, the operations underpinning discretization and symbolicization. In this work, we introduce a novel neural stochastic dynamical systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT). Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives. Moreover, like PLoT, our model learns to sample a diverse distribution of attractor states that reflect the mutual information between the input data and the symbolic encodings. This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuro-plausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations.
- Published
- 2023
47. Delta-AI: Local objectives for amortized inference in sparse graphical models
- Author
-
Falet, Jean-Pierre, Lee, Hae Beom, Malkin, Nikolay, Sun, Chen, Secrieru, Dragos, Jiralerspong, Thomas, Zhang, Dinghuai, Lajoie, Guillaume, and Bengio, Yoshua
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs), which we call $\Delta$-amortized inference ($\Delta$-AI). Our approach is based on the observation that when the sampling of variables in a PGM is seen as a sequence of actions taken by an agent, sparsity of the PGM enables local credit assignment in the agent's policy learning objective. This yields a local constraint that can be turned into a local loss in the style of generative flow networks (GFlowNets) that enables off-policy training but avoids the need to instantiate all the random variables for each parameter update, thus speeding up training considerably. The $\Delta$-AI objective matches the conditional distribution of a variable given its Markov blanket in a tractable learned sampler, which has the structure of a Bayesian network, with the same conditional distribution under the target PGM. As such, the trained sampler recovers marginals and conditional distributions of interest and enables inference of partial subsets of variables. We illustrate $\Delta$-AI's effectiveness for sampling from synthetic PGMs and training latent variable models with sparse factor structure., Comment: ICLR 2024; 19 pages, code: https://github.com/GFNOrg/Delta-AI/
- Published
- 2023
48. Avidity sequencing of whole genomes from retinal degeneration pedigrees identifies causal variants
- Author
-
Biswas, Pooja, Villanueva, Adda, Krajacich, Benjamin J, Moreno, Juan, Zhao, Junhua, Berry, Anne Marie, Lazaro, Danielle, Lajoie, Bryan R, Kruglyak, Semyon, and Ayyagari, Radha
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Neurodegenerative ,Neurosciences ,Biotechnology ,Human Genome ,Rare Diseases ,Eye Disease and Disorders of Vision ,2.1 Biological and endogenous factors ,Eye ,Good Health and Well Being ,Humans ,Retinal Degeneration ,Pedigree ,Whole Genome Sequencing ,Male ,Female ,ATP-Binding Cassette Transporters ,General Science & Technology - Abstract
Whole genome sequencing has been an effective tool in the discovery of variants that cause rare diseases. In this study, we determined the suitability of a novel avidity sequencing approach for rare disease applications. We built a sample to results workflow, combining this sequencing technology with standard library preparation kits, analysis workflows, and interpretation tools. We applied the workflow to ten pedigrees with inherited retinal degeneration (IRD) phenotype. Candidate variants of interest identified through whole genome sequencing were further evaluated using segregation analysis in the additional family members. Potentially causal variants in known IRD genes were detected in five of the ten cases. These high confidence variants were found in ABCA4, CERKL, MAK, PEX6 and RDH12 genes associated with retinal degeneration, that could be sufficient to cause pathology. Pending confirmatory clinical evaluation, we observed a 50% diagnostic yield, consistent with previously reported outcomes of IRD patient analysis. The study confirms that avidity sequencing is effective in detection of causal variants when used for whole genome sequencing in rare disease applications.
- Published
- 2024
49. The Space Omics and Medical Atlas (SOMA) and international astronaut biobank
- Author
-
Overbey, Eliah G., Kim, JangKeun, Tierney, Braden T., Park, Jiwoon, Houerbi, Nadia, Lucaci, Alexander G., Garcia Medina, Sebastian, Damle, Namita, Najjar, Deena, Grigorev, Kirill, Afshin, Evan E., Ryon, Krista A., Sienkiewicz, Karolina, Patras, Laura, Klotz, Remi, Ortiz, Veronica, MacKay, Matthew, Schweickart, Annalise, Chin, Christopher R., Sierra, Maria A., Valenzuela, Matias F., Dantas, Ezequiel, Nelson, Theodore M., Cekanaviciute, Egle, Deards, Gabriel, Foox, Jonathan, Narayanan, S. Anand, Schmidt, Caleb M., Schmidt, Michael A., Schmidt, Julian C., Mullane, Sean, Tigchelaar, Seth Stravers, Levitte, Steven, Westover, Craig, Bhattacharya, Chandrima, Lucotti, Serena, Wain Hirschberg, Jeremy, Proszynski, Jacqueline, Burke, Marissa, Kleinman, Ashley S., Butler, Daniel J., Loy, Conor, Mzava, Omary, Lenz, Joan, Paul, Doru, Mozsary, Christopher, Sanders, Lauren M., Taylor, Lynn E., Patel, Chintan O., Khan, Sharib A., Suhail Mohamad, Mir, Byhaqui, Syed Gufran Ahmad, Aslam, Burhan, Gajadhar, Aaron S., Williamson, Lucy, Tandel, Purvi, Yang, Qiu, Chu, Jessica, Benz, Ryan W., Siddiqui, Asim, Hornburg, Daniel, Blease, Kelly, Moreno, Juan, Boddicker, Andrew, Zhao, Junhua, Lajoie, Bryan, Scott, Ryan T., Gilbert, Rachel R., Lai Polo, San-huei, Altomare, Andrew, Kruglyak, Semyon, Levy, Shawn, Ariyapala, Ishara, Beer, Joanne, Zhang, Bingqing, Hudson, Briana M., Rininger, Aric, Church, Sarah E., Beheshti, Afshin, Church, George M., Smith, Scott M., Crucian, Brian E., Zwart, Sara R., Matei, Irina, Lyden, David C., Garrett-Bakelman, Francine, Krumsiek, Jan, Chen, Qiuying, Miller, Dawson, Shuga, Joe, Williams, Stephen, Nemec, Corey, Trudel, Guy, Pelchat, Martin, Laneuville, Odette, De Vlaminck, Iwijn, Gross, Steven, Bolton, Kelly L., Bailey, Susan M., Granstein, Richard, Furman, David, Melnick, Ari M., Costes, Sylvain V., Shirah, Bader, Yu, Min, Menon, Anil S., Mateus, Jaime, Meydan, Cem, and Mason, Christopher E.
- Published
- 2024
- Full Text
- View/download PDF
50. A scoping review on effective measurements of emotional responses in teamwork contexts
- Author
-
Huang, Xiaoshan and Lajoie, Susanne P.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.