1. C-terminal binding protein 2 is a novel tumor suppressor targeting the MYC-IRF4 axis in multiple myeloma.
- Author
-
Cheung CHY, Cheng CK, Leung KT, Zhang C, Ho CY, Luo X, Kam AYF, Xia T, Wan TSK, Pitts HA, Chan NPH, Cheung JS, Wong RSM, Zhang XB, and Ng MHL
- Subjects
- Animals, Humans, Mice, Cell Line, Tumor, Gene Expression Regulation, Neoplastic, Signal Transduction drug effects, Tumor Suppressor Proteins metabolism, Alcohol Oxidoreductases metabolism, Alcohol Oxidoreductases antagonists & inhibitors, Interferon Regulatory Factors metabolism, Interferon Regulatory Factors genetics, Multiple Myeloma metabolism, Multiple Myeloma drug therapy, Multiple Myeloma pathology, Proto-Oncogene Proteins c-myc metabolism, Co-Repressor Proteins antagonists & inhibitors, Co-Repressor Proteins metabolism
- Abstract
Abstract: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy., (© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF