1. Ameloblastin binding to biomimetic models of cell membranes - A continuum of intrinsic disorder.
- Author
-
Buchko GW, Kegulian NC, and Moradian-Oldak J
- Abstract
Objective: A 37-residue amino acid sequence corresponding to the segment encoded by exon-5 of murine ameloblastin (Ambn), AB2 (Y67-Q103), has been implicated with membrane association, ameloblastin self-assembly, and amelogenin-binding. Our aim was to characterize, at the residue level, the structural behavior of AB2 bound to chemical mimics of biological membranes using NMR spectroscopy., Design: To better define the structure of AB2 using NMR-based methods, recombinant
13 C- and15 N-labelled AB2 (*AB2) was prepared and data collected free in solution and with deuterated dodecylphosphocholine (dPC) micelles, deuterated bicelles, and both small and large unilamellar vesicles., Results: Amide chemical shift and intensity perturbations observed in1 H-15 N HSQC spectra of *AB2 in the presence of bicelles and dPC micelles suggest that a region of *AB2, S6-E36 (murine Ambn S68 - E98), associates with the membrane biomimetics. A CSI-3 analysis of the NMR chemical shift assignments for *AB2 free in solution and bound to dPC micelles indicated the peptide remains disordered except for the adoption of a short, 12-residue α-helix, F10-G21 (murine Ambn F72-G83). In dPC micelles, the NOE NMR data was void of patterns characteristic of long-lived helical structure indicating this helix was transient in nature., Conclusions: A continuum of intrinsic disorder in the membrane-bound state may be responsible for ameloblastin's ability to dynamically interact with multiple partners at the same site during amelogenesis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)- Published
- 2024
- Full Text
- View/download PDF