5,140 results on '"Landini P"'
Search Results
2. Dark Matter in the High-Scale Seesaw Leptogenesis Paradigm
- Author
-
Herrero-Garcia, Juan, Landini, Giacomo, and Yanagida, Tsutomu T.
- Subjects
High Energy Physics - Phenomenology - Abstract
The seesaw mechanism with three heavy Majorana right-handed neutrinos provides an elegant explanation for neutrino masses and, combined with leptogenesis, can generate the baryon asymmetry of the universe (BAU). Naturally embedded in a Grand Unified Theory, this framework stands as one of the best-motivated extensions beyond the Standard Model. However, it does not account for dark matter (DM). In this paper, we propose a minimal extension that introduces a dark sector with a singlet Majorana fermion (as the DM candidate) and a complex scalar singlet. The heavy right-handed neutrinos serve multiple roles: i) explaining the small masses of active neutrinos via the seesaw mechanism, ii) generating the BAU through leptogenesis, and iii) producing the cold DM density through their decays. Interestingly, the model also predicts a subdominant DM component from late scalar decays, which in some cases may be hot or warm at the onset of structure formation, as well as an equal number of non-thermal neutrinos. These components leave distinct signatures in various cosmological observables. Furthermore, electromagnetic energy injection from scalar decays alter predictions from Big Bang Nucleosynthesis and induce spectral distortions in the Cosmic Microwave Background black-body spectrum. Upcoming experiments, such as the Primordial Inflation Explorer (PIXIE), could probe a significant portion of the parameter space of this extended high-scale seesaw scenario., Comment: 9 pages, 2 figures, 1 table
- Published
- 2024
3. Joint Training of Speaker Embedding Extractor, Speech and Overlap Detection for Diarization
- Author
-
Pálka, Petr, Landini, Federico, Klement, Dominik, Diez, Mireia, Silnova, Anna, Delcroix, Marc, and Burget, Lukáš
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
In spite of the popularity of end-to-end diarization systems nowadays, modular systems comprised of voice activity detection (VAD), speaker embedding extraction plus clustering, and overlapped speech detection (OSD) plus handling still attain competitive performance in many conditions. However, one of the main drawbacks of modular systems is the need to run (and train) different modules independently. In this work, we propose an approach to jointly train a model to produce speaker embeddings, VAD and OSD simultaneously and reach competitive performance at a fraction of the inference time of a standard approach. Furthermore, the joint inference leads to a simplified overall pipeline which brings us one step closer to a unified clustering-based method that can be trained end-to-end towards a diarization-specific objective.
- Published
- 2024
4. Classical mechanics as the high-entropy limit of quantum mechanics
- Author
-
Carcassi, Gabriele, Landini, Manuele, and Aidala, Christine A.
- Subjects
Quantum Physics - Abstract
We show that classical mechanics can be recovered as the high-entropy limit of quantum mechanics. That is, the high entropy masks quantum effects, and mixed states of high enough entropy can be approximated with classical distributions. The mathematical limit $\hbar \to 0$ can be reinterpreted as setting the zero entropy of pure states to $-\infty$, in the same way that non-relativistic mechanics can be recovered mathematically with $c \to \infty$. Physically, these limits are more appropriately defined as $S \gg 0$ and $v \ll c$. Both limits can then be understood as approximations independently of what circumstances allow those approximations to be valid. Consequently, the limit presented is independent of possible underlying mechanisms and of what interpretation is chosen for both quantum states and entropy., Comment: 14 pages, 3 figures
- Published
- 2024
5. Leveraging Self-Supervised Learning for Speaker Diarization
- Author
-
Han, Jiangyu, Landini, Federico, Rohdin, Johan, Silnova, Anna, Diez, Mireia, and Burget, Lukas
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
End-to-end neural diarization has evolved considerably over the past few years, but data scarcity is still a major obstacle for further improvements. Self-supervised learning methods such as WavLM have shown promising performance on several downstream tasks, but their application on speaker diarization is somehow limited. In this work, we explore using WavLM to alleviate the problem of data scarcity for neural diarization training. We use the same pipeline as Pyannote and improve the local end-to-end neural diarization with WavLM and Conformer. Experiments on far-field AMI, AISHELL-4, and AliMeeting datasets show that our method substantially outperforms the Pyannote baseline and achieves new state-of-the-art results on AMI and AISHELL-4, respectively. In addition, by analyzing the system performance under different data quantity scenarios, we show that WavLM representations are much more robust against data scarcity than filterbank features, enabling less data hungry training strategies. Furthermore, we found that simulated data, usually used to train endto-end diarization models, does not help when using WavLM in our experiments. Additionally, we also evaluate our model on the recent CHiME8 NOTSOFAR-1 task where it achieves better performance than the Pyannote baseline. Our source code is publicly available at https://github.com/BUTSpeechFIT/DiariZen., Comment: Submitted to ICASSP 2025; New results are updated but conclusions are exactly the same as the original one
- Published
- 2024
6. Emerging supersolidity from a polariton condensate in a photonic crystal waveguide
- Author
-
Trypogeorgos, Dimitrios, Gianfrate, Antonio, Landini, Manuele, Nigro, Davide, Gerace, Dario, Carusotto, Iacopo, Riminucci, Fabrizio, Baldwin, Kirk W., Pfeiffer, Loren N., Martone, Giovanni I., De Giorgi, Milena, Ballarini, Dario, and Sanvitto, Daniele
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Quantum Gases - Abstract
A supersolid is a counter-intuitive phase of matter where its constituent particles are arranged into a crystalline structure, yet they are free to flow without friction. This requires the particles to share a global macroscopic phase while being able to reduce their total energy by spontaneous, spatial self-organisation. This exotic state of matter has been achieved in different systems using Bose-Einstein condensates coupled to cavities, possessing spin-orbit coupling, or dipolar interactions. Here we provide experimental evidence of a new implementation of the supersolid phase in a novel non-equilibrium context based on exciton-polaritons condensed in a topologically non-trivial, bound-in-the-continuum state with exceptionally low losses. We measure the density modulation of the polaritonic state indicating the breaking of translational symmetry with a remarkable precision of a few parts in a thousand. Direct access to the phase of the wavefunction allows us to additionally measure the local coherence of the superfluid component. We demonstrate the potential of our synthetic photonic material to host phonon dynamics and a multimode excitation spectrum.
- Published
- 2024
7. From Modular to End-to-End Speaker Diarization
- Author
-
Landini, Federico
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Artificial Intelligence ,Computer Science - Sound - Abstract
Speaker diarization is usually referred to as the task that determines ``who spoke when'' in a recording. Until a few years ago, all competitive approaches were modular. Systems based on this framework reached state-of-the-art performance in most scenarios but had major difficulties dealing with overlapped speech. More recently, the advent of end-to-end models, capable of dealing with all aspects of speaker diarization with a single model and better performing regarding overlapped speech, has brought high levels of attention. This thesis is framed during a period of co-existence of these two trends. We describe a system based on a Bayesian hidden Markov model used to cluster x-vectors (speaker embeddings obtained with a neural network), known as VBx, which has shown remarkable performance on different datasets and challenges. We comment on its advantages and limitations and evaluate results on different relevant corpora. Then, we move towards end-to-end neural diarization (EEND) methods. Due to the need for large training sets for training these models and the lack of manually annotated diarization data in sufficient quantities, the compromise solution consists in generating training data artificially. We describe an approach for generating synthetic data which resembles real conversations in terms of speaker turns and overlaps. We show how this method generating ``simulated conversations'' allows for better performance than using a previously proposed method for creating ``simulated mixtures'' when training the popular EEND with encoder-decoder attractors (EEND-EDA). We also propose a new EEND-based model, which we call DiaPer, and show that it can perform better than EEND-EDA, especially when dealing with many speakers and handling overlapped speech. Finally, we compare both VBx-based and DiaPer systems on a wide variety of corpora and comment on the advantages of each technique., Comment: Ph.D. thesis. Successfully defended on 27.06.2024
- Published
- 2024
8. Spoof Diarization: 'What Spoofed When' in Partially Spoofed Audio
- Author
-
Zhang, Lin, Wang, Xin, Cooper, Erica, Diez, Mireia, Landini, Federico, Evans, Nicholas, and Yamagishi, Junichi
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Computation and Language ,Computer Science - Sound - Abstract
This paper defines Spoof Diarization as a novel task in the Partial Spoof (PS) scenario. It aims to determine what spoofed when, which includes not only locating spoof regions but also clustering them according to different spoofing methods. As a pioneering study in spoof diarization, we focus on defining the task, establishing evaluation metrics, and proposing a benchmark model, namely the Countermeasure-Condition Clustering (3C) model. Utilizing this model, we first explore how to effectively train countermeasures to support spoof diarization using three labeling schemes. We then utilize spoof localization predictions to enhance the diarization performance. This first study reveals the high complexity of the task, even in restricted scenarios where only a single speaker per audio file and an oracle number of spoofing methods are considered. Our code is available at https://github.com/nii-yamagishilab/PartialSpoof., Comment: Accepted to Interspeech 2024
- Published
- 2024
9. Interpretable machine learning approach for electron antineutrino selection in a large liquid scintillator detector
- Author
-
Gavrikov, A., Cerrone, V., Serafini, A., Brugnera, R., Garfagnini, A., Grassi, M., Jelmini, B., Lastrucci, L., Aiello, S., Andronico, G., Antonelli, V., Barresi, A., Basilico, D., Beretta, M., Bergnoli, A., Borghesi, M., Brigatti, A., Bruno, R., Budano, A., Caccianiga, B., Cammi, A., Caruso, R., Chiesa, D., Clementi, C., Dusini, S., Fabbri, A., Felici, G., Ferraro, F., Giammarchi, M. G., Giudice, N., Guizzetti, R. M., Guardone, N., Landini, C., Lippi, I., Loffredo, S., Loi, L., Lombardi, P., Lombardo, C., Mantovani, F., Mari, S. M., Martini, A., Miramonti, L., Montuschi, M., Nastasi, M., Orestano, D., Ortica, F., Paoloni, A., Percalli, E., Petrucci, F., Previtali, E., Ranucci, G., Re, A. C., Redchuck, M., Ricci, B., Romani, A., Saggese, P., Sava, G., Sirignano, C., Sisti, M., Stanco, L., Farilla, E. Stanescu, Strati, V., Torri, M. D. C., Triossi, A., Tuvé, C., Venettacci, C., Verde, G., and Votano, L.
- Subjects
Physics - Instrumentation and Detectors ,Computer Science - Machine Learning ,High Energy Physics - Experiment ,Physics - Data Analysis, Statistics and Probability - Abstract
Several neutrino detectors, KamLAND, Daya Bay, Double Chooz, RENO, and the forthcoming large-scale JUNO, rely on liquid scintillator to detect reactor antineutrino interactions. In this context, inverse beta decay represents the golden channel for antineutrino detection, providing a pair of correlated events, thus a strong experimental signature to distinguish the signal from a variety of backgrounds. However, given the low cross-section of antineutrino interactions, the development of a powerful event selection algorithm becomes imperative to achieve effective discrimination between signal and backgrounds. In this study, we introduce a machine learning (ML) model to achieve this goal: a fully connected neural network as a powerful signal-background discriminator for a large liquid scintillator detector. We demonstrate, using the JUNO detector as an example, that, despite the already high efficiency of a cut-based approach, the presented ML model can further improve the overall event selection efficiency. Moreover, it allows for the retention of signal events at the detector edges that would otherwise be rejected because of the overwhelming amount of background events in that region. We also present the first interpretable analysis of the ML approach for event selection in reactor neutrino experiments. This method provides insights into the decision-making process of the model and offers valuable information for improving and updating traditional event selection approaches., Comment: This is a post-peer-review, pre-copyedit version of an article published in Phys. Lett. B. The final published version is available online: https://www.sciencedirect.com/science/article/pii/S0370269324006993
- Published
- 2024
- Full Text
- View/download PDF
10. Distillation and Stripping purification plants for JUNO liquid scintillator
- Author
-
Landini, C., Beretta, M., Lombardi, P., Brigatti, A., Montuschi, M., Parmeggiano, S., Ranucci, G., Antonelli, V., Basilico, D., Caccianiga, B., Giammarchi, M. G., Miramonti, L., Percalli, E., Re, A. C., Saggese, P., Torri, M. D. C., Aiello, S., Andronico, G., Barresi, A., Bergnoli, A., Borghesi, M., Brugnera, R., Bruno, R., Budano, A., Cammi, A., Cerrone, V., Caruso, R., Chiesa, D., Clementi, C., Dusini, S., Fabbri, A., Felici, G., Garfagnini, A., Giudice, N., Gavrikov, A., Grassi, M., Guizzetti, R. M., Guardone, N., Jelmini, B., Lastrucci, L., Lippi, I., Loi, L., Lombardo, C., Mantovani, F., Mari, S. M., Martini, A., Nastasi, M., Orestano, D., Ortica, F., Paoloni, A., Petrucci, F., Previtali, E., Redchuck, M., Ricci, B., Romani, A., Sava, G., Serafini, A., Sirignano, C., Sisti, M., Stanco, L., Farilla, E. Stanescu, Strati, V., Triossi, A., Tuvè, C., Venettacci, C., Verde, G., and Votano, L.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The optical and radiochemical purification of the scintillating liquid, which will fill the central detector of the JUNO experiment, plays a crucial role in achieving its scientific goals. Given its gigantic mass and dimensions and an unprecedented target value of about 3% @ 1 MeV in energy resolution, JUNO has set severe requirements on the parameters of its scintillator, such as attenuation length (Lat>20 m at 430 nm), transparency, light yield, and content of radioactive contaminants (238U,232Th<10-15 g/g). To accomplish these needs, the scintillator will be processed using several purification methods, including distillation in partial vacuum and gas stripping, which are performed in two large scale plants installed at the JUNO site. In this paper, layout, operating principles, and technical aspects which have driven the design and construction of the distil- lation and gas stripping plants are reviewed. The distillation is effective in enhancing the optical properties and removing heavy radio-impurities (238U,232Th, 40K), while the stripping process exploits pure water steam and high-purity nitrogen to extract gaseous contaminants (222Rn, 39Ar, 85Kr, O2) from the scintillator. The plant operating parameters have been tuned during the recent com- missioning phase at the JUNO site and several QA/QC measurements and tests have been performed to evaluate the performances of the plants. Some preliminary results on the efficiency of these purification processes will be shown., Comment: 11 pages, 7 figures
- Published
- 2024
11. Refractive index in the JUNO liquid scintillator
- Author
-
Zhang, H. S., Beretta, M., Cialdi, S., Yang, C. X., Huang, J. H., Ferraro, F., Cao, G. F., Reina, G., Deng, Z. Y., Suerra, E., Altilia, S., Antonelli, V., Basilico, D., Brigatti, A., Caccianiga, B., Giammarchi, M. G., Landini, C., Lombardi, P., Miramonti, L., Percalli, E., Ranucci, G., Re, A. C., Saggese, P., Torri, M. D. C., Aiello, S., Andronico, G., Barresi, A., Bergnoli, A., Borghesi, M., Brugnera, R., Bruno, R., Budano, A., Cammi, A., Cerrone, V., Caruso, R., Chiesa, D., Clementi, C., Dusini, S., Fabbri, A., Felici, G., Garfagnini, A., Giudice, N., Gavrikov, A., Grassi, M., Guizzetti, R. M., Guardone, N., Jelmini, B., Lastrucci, L., Lippi, I., Loi, L., Lombardo, C., Mantovani, F., Mari, S. M., Martini, A., Montuschi, M., Nastasi, M., Orestano, D., Ortica, F., Paoloni, A., Petrucci, F., Previtali, E., Redchuck, M., Ricci, B., Romani, A., Sava, G., Serafini, A., Sirignano, C., Sisti, M., Stanco, L., Farilla, E. Stanescu, Strati, V., Triossi, A., Tuvé, C., Venettacci, C., Verde, G., and Votano, L.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
In the field of rare event physics, it is common to have huge masses of organic liquid scintillator as detection medium. In particular, they are widely used to study neutrino properties or astrophysical neutrinos. Thanks to its safety properties (such as low toxicity and high flash point) and easy scalability, linear alkyl benzene is the most common solvent used to produce liquid scintillators for large mass experiments. The knowledge of the refractive index is a pivotal point to understand the detector response, as this quantity (and its wavelength dependence) affects the Cherenkov radiation and photon propagation in the medium. In this paper, we report the measurement of the refractive index of the JUNO liquid scintillator between 260-1064 nm performed with two different methods (an ellipsometer and a refractometer), with a sub percent level precision. In addition, we used an interferometer to measure the group velocity in the JUNO liquid scintillator and verify the expected value derived from the refractive index measurements., Comment: 6 pages, 9 figures
- Published
- 2024
12. JUNO Sensitivity to Invisible Decay Modes of Neutrons
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Adamowicz, Kai, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blake, Iwan, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Calvez, Steven, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Xin, Chen, Yiming, Chen, Yixue, Chen, Yu, Chen, Zelin, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chou, Po-Lin, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Cui, Chenyang, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Duan, Yujie, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fedoseev, Dmitry, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Fritsch, Fritsch, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guizzetti, Rosa Maria, Guo, Cong, Guo, Wanlei, Hagner, Caren, Han, Hechong, Han, Ran, Han, Yang, He, Jinhong, He, Miao, He, Wei, He, Xinhai, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jun, Hu, Peng, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Shengheng, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Guangzheng, Jiang, Wei, Jiang, Xiaoshan, Jiang, Xiaozhao, Jiang, Yixuan, Jing, Xiaoping, Jollet, Cécile, Kang, Li, Karaparabil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kumaran, Sindhujha, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Lai, Haojing, Landini, Cecilia, Leblanc, Sébastien, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Hongjian, Li, Huang, Li, Jiajun, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Shuo, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, An-An, Liang, Hao, Liao, Jiajun, Liao, Yilin, Liao, Yuzhong, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hongyang, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Loi, Lorenzo, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Meishu, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malabarba, Marco, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Reveco, Cristobal Morales, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parker, George, Parmeggiano, Sergio, Patsias, Achilleas, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Percalli, Elisa, Perrin, Willy, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Reina, Gioele, Ren, Bin, Ren, Jie, Ren, Yuhan, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Shao, Junyu, Sharov, Vladislav, Shi, Hexi, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Strizh, Michail, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Guangbao, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Takenaka, Akira, Tan, Xiaohan, Tang, Jian, Tang, Jingzhe, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Triossi, Andrea, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Hanwen, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Mingyuan, Wang, Qianchuan, Wang, Ruiguang, Wang, Sibo, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wu, Chengxin, Wu, Diru, Wu, Qun, Wu, Yinhui, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xian, Shishen, Xiang, Ziqian, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yijun, Xie, Yuguang, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jiayang, Xu, Jilei, Xu, Jing, Xu, Jinghuan, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Fengfan, Yang, Jie, Yang, Lei, Yang, Pengfei, Yang, Xiaoyu, Yang, Yifan, Yang, Yixiang, Yang, Zekun, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zamogilnyi, Kirill, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Hangchang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Junwei, Zhang, Lei, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yibing, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zhao, Tianhao, Zheng, Hua, Zheng, Yangheng, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhou, Xing, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We explore the bound neutrons decay into invisible particles (e.g., $n\rightarrow 3 \nu$ or $nn \rightarrow 2 \nu$) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: $ n \rightarrow { inv} $ and $ nn \rightarrow { inv} $. The invisible decays of $s$-shell neutrons in $^{12}{\rm C}$ will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino $\bar{\nu}_e$, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are $\tau/B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, {\rm yr}$ and $\tau/B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, {\rm yr}$., Comment: 28 pages, 7 figures, 4 tables
- Published
- 2024
13. Dark matter in QCD-like theories with a theta vacuum: cosmological and astrophysical implications
- Author
-
García-Cely, Camilo, Landini, Giacomo, and Zapata, Óscar
- Subjects
High Energy Physics - Phenomenology - Abstract
QCD-like theories in which the dark matter (DM) of the Universe is hypothesized to be a thermal relic in the form of a dark pion has been extensively investigated, with most studies neglecting the CP-violating $\theta$-angle associated with the topological vacuum. We point out that a non-vanishing $\theta$ could potentially trigger resonant number-changing processes giving rise to the observed relic density in agreement with perturbative unitarity as well as observations of clusters of galaxies. This constitutes a novel production mechanism of MeV DM and an alternative to those relying on the Wess-Zumino-Witten term. Moreover, for specific meson mass spectra, similar resonant scatterings serve as a realization of velocity-dependent self-interacting DM without a light mediator. Explicit benchmark models are presented together with a discussion of possible signals, including gravitational waves from the chiral phase transition associated with the dark pions., Comment: 5+5 pages, 4 figures; references added, discussion on BM2 extended
- Published
- 2024
14. Utilising Narrative Medicine to Identify Key Factors Affecting Quality of Life in Dry Eye Disease: An Italian Multicentre Study
- Author
-
Aragona, Pasquale, Barabino, Stefano, Akbas, Ertugrul, Ryan, Robert, Landini, Linda, Marini, Maria G., Fiorencis, Alessandra, Cappuccio, Antonietta, Leonardi, Andrea, Vercesi, Antonio, Frisina, Rino, Bandello, Francesco, Berchicci, Luigi, Aragona, Emanuela, Semeraro, Francesco, Romano, Vito, Di Carlo, Igor, Reibaldi, Michele, Ghilardi, Andrea, De Cillà, Stefano, Marchini, Giorgio, Tognetto, Daniele, Fontana, Luigi, Versura, Piera, D’Eliseo, Domenico, Mularoni, Alessandro, Cagini, Carlo, Mencucci, Rita, Coassin, Marco, Di Zazzo, Antonio, Rizzo, Stanislao, Fasciani, Romina, Gualdi, Luca, Cusumano, Andrea, Spadea, Leopoldo, Cantera, Emily, Scorcia, Vincenzo, Giannaccare, Giuseppe, Rosa, Pasquale, Troisi, Salvatore, Provenzano, Antonio, Simonelli, Francesca, Marullo, Michele, Ciracì, Lorenza, Costagliola, Ciro, Primavera, Vito, Gagliano, Caterina, Pinna, Antonio, Giovanni, Alessio, Boscia, Francesco, Gelso, Aldo, Mastropasqua, Leonardo, Bonfiglio, Enza, Rolando, Maurizio, and Bonini, Stefano
- Published
- 2024
- Full Text
- View/download PDF
15. 'Ecco la primavera'. Francesco Landini e la ballata nel Trecento italiano
- Author
-
Stefania Roncroffi
- Subjects
Landini ,Ars Nova ,ballata ,didattica dell'ascolto ,Music and books on Music ,Musical instruction and study ,MT1-960 - Abstract
Francesco Landini (or Landino approx. 1325/35-1397) was one of the most important figures of the Ars nova Italian. Composer, poet, organist and organology expert was blind since childhood. He spent most of his life as organist and choirmaster at the church of San Lorenzo in Florence. He is an author representative of an era and a place, the Florence that has lived the nightmare of the Black Death in 1348. The great reputation which he enjoyed among his contemporaries allows the use of iconographic sources of him, of literary quotes that describe his work, of illuminated manuscripts that transmit its music. Like other contemporary authors he carried out an independent and parallel compositional activity from his job in San Lorenzo and wrote primarily secular music, in particular dealt with the kind of ballad, which radically transformed. The teaching unit presented here examines the ballad Ecco la primavera. It is divided into several independent sections and at the same time closely related: through reflective listening and conscious to conduct the class to identify the structure and character of the ballad (teaching of listening). The analysis of historical sources can then shed light on the context of production and fruition of the piece, as well as the personality of the composer (teaching of history). Finally, the data acquired will facilitate execution aware of the ballad itself, that is in line with his style and inserted into the soundscape for which it was produced (teaching of execution).
- Published
- 2012
- Full Text
- View/download PDF
16. Schwann cell C5aR1 co-opts inflammasome NLRP1 to sustain pain in a mouse model of endometriosis
- Author
-
Titiz, Mustafa, Landini, Lorenzo, Souza Monteiro de Araujo, Daniel, Marini, Matilde, Seravalli, Viola, Chieca, Martina, Pensieri, Pasquale, Montini, Marco, De Siena, Gaetano, Pasquini, Benedetta, Vannuccini, Silvia, Iannone, Luigi Francesco, Cunha, Thiago M., Brancolini, Giulia, Bellantoni, Elisa, Scuffi, Irene, Mastricci, Alessandra, Tesi, Martina, Di Tommaso, Mariarosaria, Petraglia, Felice, Geppetti, Pierangelo, Nassini, Romina, and De Logu, Francesco
- Published
- 2024
- Full Text
- View/download PDF
17. Dynamical origin of neutrino masses and dark matter from a new confining sector
- Author
-
Berbig, Maximilian, Herrero-Garcia, Juan, and Landini, Giacomo
- Subjects
High Energy Physics - Phenomenology - Abstract
A dynamical mechanism, based on a confining non-abelian dark symmetry, which generates Majorana masses for hypercharge-less fermions, is proposed. We apply it to the inverse seesaw scenario, which allows to generate light neutrino masses from the interplay of TeV-scale Pseudo-Dirac mass terms and a small explicit breaking of lepton number. A single generation of vector-like dark quarks, transforming under a $\text{SU}(3)_\text{D}$ gauge symmetry, is coupled to a real singlet scalar, which serves as a portal between the dark quark condensate and three generations of heavy sterile neutrinos. Such a dark sector and the Standard Model (SM) are kept in thermal equilibrium with each other via sizeable Yukawa couplings to the heavy neutrinos. In this framework the lightest dark baryon, which has spin $3/2$ and is stabilized at the renormalizable level by an accidental dark baryon number symmetry, can account for the observed relic density via thermal freeze-out from annihilations into the lightest dark mesons. These mesons in turn decay to heavy neutrinos, which produce SM final states upon decay. This model may be probed by next generation neutrino telescopes via neutrino lines produced from dark matter annihilations., Comment: v1: 7 pages, 2 figures + 1 appendix v2: added references and a discussion on low-scale sterile neutrinos + minor corrections, matches published version in PRD
- Published
- 2024
- Full Text
- View/download PDF
18. Do End-to-End Neural Diarization Attractors Need to Encode Speaker Characteristic Information?
- Author
-
Zhang, Lin, Stafylakis, Themos, Landini, Federico, Diez, Mireia, Silnova, Anna, and Burget, Lukáš
- Subjects
Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
In this paper, we apply the variational information bottleneck approach to end-to-end neural diarization with encoder-decoder attractors (EEND-EDA). This allows us to investigate what information is essential for the model. EEND-EDA utilizes attractors, vector representations of speakers in a conversation. Our analysis shows that, attractors do not necessarily have to contain speaker characteristic information. On the other hand, giving the attractors more freedom to allow them to encode some extra (possibly speaker-specific) information leads to small but consistent diarization performance improvements. Despite architectural differences in EEND systems, the notion of attractors and frame embeddings is common to most of them and not specific to EEND-EDA. We believe that the main conclusions of this work can apply to other variants of EEND. Thus, we hope this paper will be a valuable contribution to guide the community to make more informed decisions when designing new systems., Comment: Accepted to Odyssey 2024. This arXiv version includes an appendix for more visualizations. Code: https://github.com/BUTSpeechFIT/EENDEDA_VIB
- Published
- 2024
19. Study of solar brightness profiles in the 18-26 GHz frequency range with INAF radio telescopes II. Evidence for coronal emission
- Author
-
Marongiu, M., Pellizzoni, A., Righini, S., Mulas, S., Nesti, R., Burtovoi, A., Romoli, M., Serra, G., Valente, G., Egron, E., Murtas, G., Iacolina, M. N., Melis, A., Guglielmino, S. L., Loru, S., Zucca, P., Zanichelli, A., Bachetti, M., Bemporad, A., Buffa, F., Concu, R., Deiana, G. L., Karakotia, C., Ladu, A., Maccaferri, A., Marongiu, P., Messerotti, M., Navarrini, A., Orfei, A., Ortu, P., Pili, M., Pisanu, T., Pupillo, G., Romano, P., Saba, A., Schirru, L., Tiburzi, C., Abbo, L., Frassati, F., Giarrusso, M., Jerse, G., Landini, F., Pancrazzi, M., Russano, G., Sasso, C., and Susino, R.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
One of the most important objectives of solar physics is the physical understanding of the solar atmosphere, the structure of which is also described in terms of the density (N) and temperature (T) distributions of the atmospheric matter. Several multi-frequency analyses show that the characteristics of these distributions are still debated, especially for the outer coronal emission. We aim to constrain the T and N distributions of the solar atmosphere through observations in the centimetric radio domain. We employ single-dish observations from two of the INAF radio telescopes at the K-band frequencies (18 - 26 GHz). We investigate the origin of the significant brightness temperature ($T_B$) level that we detected up to the upper corona ($\sim 800$ Mm of altitude with respect to the photospheric solar surface). To probe the physical origin of the atmospheric emission and to constrain instrumental biases, we reproduced the solar signal by convolving specific 2D antenna beam models. The analysis of the solar atmosphere is performed by adopting a physical model that assumes the thermal bremsstrahlung as the emission mechanism, with specific T and N distributions. The modelled $T_B$ profiles are compared with those observed by averaging solar maps obtained during the minimum of solar activity (2018 - 2020). The T and N distributions are compatible (within $25\%$ of uncertainty) with the model up to $\sim 60$ Mm and $\sim 100$ Mm of altitude, respectively. The analysis of the role of the antenna beam pattern on our solar maps proves the physical nature of the atmospheric emission in our images up to the coronal tails seen in our $T_B$ profiles. The challenging analysis of the coronal radio emission at higher altitudes, together with the data from satellite instruments will require further multi-frequency measurements., Comment: 12 pages, 8 figures, 5 tables, accepted by A&A; v1
- Published
- 2024
20. Observation of many-body dynamical localization
- Author
-
Guo, Yanliang, Dhar, Sudipta, Yang, Ang, Chen, Zekai, Yao, Hepeng, Horvath, Milena, Ying, Lei, Landini, Manuele, and Nägerl, Hanns-Christoph
- Subjects
Quantum Physics ,Condensed Matter - Quantum Gases ,Physics - Atomic Physics - Abstract
The quantum kicked rotor is a paradigmatic model system in quantum physics. As a driven quantum system, it is used to study the transition from the classical to the quantum world and to elucidate the emergence of chaos and diffusion. In contrast to its classical counterpart, it features dynamical localization, specifically Anderson localization in momentum space. The interacting many-body kicked rotor is believed to break localization, as recent experiments suggest. Here, we present evidence for many-body dynamical localization for the Lieb-Liniger version of the many-body quantum kicked rotor. After some initial evolution, the momentum distribution of interacting quantum-degenerate bosonic atoms in one-dimensional geometry, kicked hundreds of times by means of a pulsed sinusoidal potential, stops spreading. We quantify the arrested evolution by analysing the energy and the information entropy of the system as the interaction strength is tuned. In the limiting cases of vanishing and strong interactions, the first-order correlation function exhibits a very different decay behavior. Our results shed light on the boundary between the classical, chaotic world and the realm of quantum physics., Comment: 13 pages, 11 figures
- Published
- 2023
21. DiaPer: End-to-End Neural Diarization with Perceiver-Based Attractors
- Author
-
Landini, Federico, Diez, Mireia, Stafylakis, Themos, and Burget, Lukáš
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
Until recently, the field of speaker diarization was dominated by cascaded systems. Due to their limitations, mainly regarding overlapped speech and cumbersome pipelines, end-to-end models have gained great popularity lately. One of the most successful models is end-to-end neural diarization with encoder-decoder based attractors (EEND-EDA). In this work, we replace the EDA module with a Perceiver-based one and show its advantages over EEND-EDA; namely obtaining better performance on the largely studied Callhome dataset, finding the quantity of speakers in a conversation more accurately, and faster inference time. Furthermore, when exhaustively compared with other methods, our model, DiaPer, reaches remarkable performance with a very lightweight design. Besides, we perform comparisons with other works and a cascaded baseline across more than ten public wide-band datasets. Together with this publication, we release the code of DiaPer as well as models trained on public and free data., Comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processing
- Published
- 2023
22. Eruptive events with exceptionally bright emission in HI Ly-alpha observed by the Metis coronagraph
- Author
-
Russano, G., Andretta, V., De Leo, Y., Teriaca, L., Uslenghi, M., Giordano, S., Telloni, D., Heinzel, P., č, S. Jej či, Abbo, L., Bemporad, A., Burtovoi, A., Capuano, G. E., Frassati, F., Guglielmino, S., Jerse, G., Landini, F., Liberatore, A., Nicolini, G., Pancrazzi, M., Romano, P., Sasso, C., Susino, R., Zangrilli, L., Da Deppo, V., Fineschi, S., Grimani, C., Moses, J. D., Naletto, G., Romoli, M., Spadaro, D., and Stangalini, M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Metis, the coronagraph on board Solar Orbiter, provides for the first time coronagraphic imaging in the ultraviolet HI Ly-alpha line and, simultaneously, in polarized visible light, thus providing a host of information on the properties of CMEs and solar eruptions like their overall dynamics, time evolution, mass content, and outflow propagation velocity in the expanding corona. We analyzed in this work six CMEs observed by Metis between April and October 2021, which are characterized by a very strong HI Ly-alpha emission. We studied in particular the morphology, kinematics, and the temporal and radial evolution of the emission of such events, focusing on the brightest UV features. The kinematics of the eruptive events under consideration were studied by determining the height-time profiles of the brightest parts on the Metis plane of the sky. Furthermore, the 3D position in the heliosphere of the CMEs were determined by employing co-temporal images from two other coronagraphs: LASCO/C2 onboard SOHO, and COR2 onboard STEREO-A. Finally, the radiometrically calibrated Metis images of the bright UV features were analyzed to provide estimates of their volume and density. From the kinematics and radiometric analyses, we obtained indications of the temperatures of the bright UV cores of these events. The analysis of these strong UV-emitting features associated with coronal mass ejections demonstrates the capabilities of the current constellation of space coronagraphs, Metis, LASCO/C2, and COR2, in providing a complete characterization of the structure and dynamics of eruptive events in their propagation phase from their inception up to several solar radii. Furthermore, we show how the unique capabilities of the Metis instrument to observe these events in both HI Ly-alpha line and polarized VL radiation allow plasma diagnostics on the thermal state of these events., Comment: 26 pages, 26 figures, 2 appendices
- Published
- 2023
23. Analysis of reactor burnup simulation uncertainties for antineutrino spectrum prediction
- Author
-
Barresi, A., Borghesi, M., Cammi, A., Chiesa, D., Loi, L., Nastasi, M., Previtali, E., Sisti, M., Aiello, S., Andronico, G., Antonelli, V., Basilico, D., Beretta, M., Bergnoli, A., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Caccianiga, B., Cerrone, V., Caruso, R., Clementi, C., Dusini, S., Fabbri, A., Felici, G., Ferraro, F., Garfagnini, A., Giammarchi, M. G., Giugice, N., Gavrikov, A., Grassi, M., Guizzetti, R. M., Guardone, N., Jelmini, B., Landini, C., Lippi, I., Loffredo, S., Lombardi, P., Lombardo, C., Mantovani, F., Mari, S. M., Martini, A., Miramonti, L., Montuschi, M., Orestano, D., Ortica, F., Paoloni, A., Percalli, E., Petrucci, F., Ranucci, G., Re, A. C., Redchuck, M., Ricci, B., Romani, A., Saggese, P., Sava, G., Serafini, A., Sirignano, C., Stanco, L., Farilla, E. Stanescu, Strati, V., Torri, M. D. C., Triossi, A., Tuvè, C., Venettacci, C., Verde, G., and Votano, L.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Nuclear reactors are a source of electron antineutrinos due to the presence of unstable fission products that undergo $\beta^-$ decay. They will be exploited by the JUNO experiment to determine the neutrino mass ordering and to get very precise measurements of the neutrino oscillation parameters. This requires the reactor antineutrino spectrum to be characterized as precisely as possible both through high resolution measurements, as foreseen by the TAO experiment, and detailed simulation models. In this paper we present a benchmark analysis utilizing Serpent Monte Carlo simulations in comparison with real pressurized water reactor spent fuel data. Our objective is to study the accuracy of fission fraction predictions as a function of different reactor simulation approximations. Then, utilizing the BetaShape software, we construct fissile antineutrino spectra using the summation method, thereby assessing the influence of simulation uncertainties on reactor antineutrino spectrum.
- Published
- 2023
- Full Text
- View/download PDF
24. Bose-Einstein condensation of non-ground-state caesium atoms
- Author
-
Horvath, Milena, Dhar, Sudipta, Das, Arpita, Frye, Matthew D., Guo, Yanliang, Hutson, Jeremy M., Landini, Manuele, and Nägerl, Hanns-Christoph
- Subjects
Condensed Matter - Quantum Gases - Abstract
Bose-Einstein condensates of ultracold atoms serve as low-entropy sources for a multitude of quantum-science applications, ranging from quantum simulation and quantum many-body physics to proof-of-principle experiments in quantum metrology and quantum computing. For stability reasons, in the majority of cases the energetically lowest-lying atomic spin state is used. Here we report the Bose-Einstein condensation of caesium atoms in the Zeeman-excited mf = 2 state, realizing a non-ground-state Bose-Einstein condensate with tunable interactions and tunable loss. We identify two regions of magnetic field in which the two-body relaxation rate is low enough that condensation is possible. We characterize the phase transition and quantify the loss processes, finding unusually high three-body losses in one of the two regions. Our results open up new possibilities for the mixing of quantum-degenerate gases, for polaron and impurity physics, and in particular for the study of impurity transport in strongly correlated one-dimensional quantum wires.
- Published
- 2023
25. Discriminative Training of VBx Diarization
- Author
-
Klement, Dominik, Diez, Mireia, Landini, Federico, Burget, Lukáš, Silnova, Anna, Delcroix, Marc, and Tawara, Naohiro
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
Bayesian HMM clustering of x-vector sequences (VBx) has become a widely adopted diarization baseline model in publications and challenges. It uses an HMM to model speaker turns, a generatively trained probabilistic linear discriminant analysis (PLDA) for speaker distribution modeling, and Bayesian inference to estimate the assignment of x-vectors to speakers. This paper presents a new framework for updating the VBx parameters using discriminative training, which directly optimizes a predefined loss. We also propose a new loss that better correlates with the diarization error rate compared to binary cross-entropy $\unicode{x2013}$ the default choice for diarization end-to-end systems. Proof-of-concept results across three datasets (AMI, CALLHOME, and DIHARD II) demonstrate the method's capability of automatically finding hyperparameters, achieving comparable performance to those found by extensive grid search, which typically requires additional hyperparameter behavior knowledge. Moreover, we show that discriminative fine-tuning of PLDA can further improve the model's performance. We release the source code with this publication., Comment: Submitted to ICASSP 2024
- Published
- 2023
26. Tomography of the Solar Corona with the Metis Coronagraph II: Three-Dimensional Reconstructions of the Electron Density and Comparison with Reconstructions Based on LASCO-C2
- Author
-
Vásquez, Alberto M., Nuevo, Federico A., Romoli, Marco, Lamy, Philippe, Frassati, Federica, Gilardy, Hugo, Frazin, Richard A., Bemporad, Alessandro, Abbo, Lucia, De Leo, Yara, Jerse, Giovanna, Landini, Federico, Russano, Giuliana, Sasso, Clementina, Susino, Roberto, and Uslenghi, Michela
- Published
- 2024
- Full Text
- View/download PDF
27. Multimodal phenotyping of foveal hypoplasia in albinism and albino-like conditions: a pediatric case series with adaptive optics insights
- Author
-
Bacci, Giacomo M., Marziali, Elisa, Bargiacchi, Sara, Paques, Michel, Virgili, Gianni, Fortunato, Pina, Durand, Marine, Rocca, Camilla, Pagliazzi, Angelica, Palazzo, Viviana, Tiberi, Lucia, Vergani, Debora, Landini, Samuela, Peron, Angela, Artuso, Rosangela, Pacini, Bianca, Stabile, Monica, Sodi, Andrea, and Caputo, Roberto
- Published
- 2024
- Full Text
- View/download PDF
28. Bose-Einstein condensation of non-ground-state caesium atoms
- Author
-
Horvath, Milena, Dhar, Sudipta, Das, Arpita, Frye, Matthew D., Guo, Yanliang, Hutson, Jeremy M., Landini, Manuele, and Nägerl, Hanns-Christoph
- Published
- 2024
- Full Text
- View/download PDF
29. Analysis of reactor burnup simulation uncertainties for antineutrino spectrum prediction
- Author
-
Barresi, A., Borghesi, M., Cammi, A., Chiesa, D., Loi, L., Nastasi, M., Previtali, E., Sisti, M., Aiello, S., Andronico, G., Antonelli, V., Basilico, D., Beretta, M., Bergnoli, A., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Caccianiga, B., Cerrone, V., Caruso, R., Clementi, C., Dusini, S., Fabbri, A., Felici, G., Ferraro, F., Garfagnini, A., Giammarchi, M. G., Giudice, N., Gavrikov, A., Grassi, M., Guizzetti, R. M., Guardone, N., Jelmini, B., Landini, C., Lippi, I., Loffredo, S., Lombardi, P., Lombardo, C., Mantovani, F., Mari, S. M., Martini, A., Miramonti, L., Montuschi, M., Orestano, D., Ortica, F., Paoloni, A., Percalli, E., Petrucci, F., Ranucci, G., Re, A. C., Redchuck, M., Ricci, B., Romani, A., Saggese, P., Sava, G., Serafini, A., Sirignano, C., Stanco, L., Stanescu Farilla, E., Strati, V., Torri, M. D. C., Triossi, A., Tuvé, C., Venettacci, C., Verde, G., and Votano, L.
- Published
- 2024
- Full Text
- View/download PDF
30. Schwann cell C5aR1 co-opts inflammasome NLRP1 to sustain pain in a mouse model of endometriosis
- Author
-
Mustafa Titiz, Lorenzo Landini, Daniel Souza Monteiro de Araujo, Matilde Marini, Viola Seravalli, Martina Chieca, Pasquale Pensieri, Marco Montini, Gaetano De Siena, Benedetta Pasquini, Silvia Vannuccini, Luigi Francesco Iannone, Thiago M. Cunha, Giulia Brancolini, Elisa Bellantoni, Irene Scuffi, Alessandra Mastricci, Martina Tesi, Mariarosaria Di Tommaso, Felice Petraglia, Pierangelo Geppetti, Romina Nassini, and Francesco De Logu
- Subjects
Science - Abstract
Abstract Over 60% of women with endometriosis experience abdominopelvic pain and broader pain manifestations, including chronic back pain, fibromyalgia, chronic fatigue, vulvodynia, and migraine. Although the imbalance of proinflammatory mediators, including the complement component C5a, is associated with endometriosis-related pain, the mechanisms causing widespread pain and the C5a role remain unclear. Female mice and women with endometriosis exhibit increased plasma C5a levels and pain. We hypothesize the Schwann cells involvement in endometriotic pain. Here, we show that silencing the C5a receptor (C5aR1) in Schwann cells blocks the C5a-induced activation of the NLRP1 inflammasome and subsequent release of interleukin-1β (IL-1β). Macrophages, recruited to sciatic/trigeminal nerves by IL-1β from Schwann cells, increase oxidative stress, which activates the proalgesic TRPA1 pathway, resulting in widespread pain. These findings reveal a pathway involving Schwann cell C5aR1, NLRP1/IL-1β activation, macrophage recruitment, oxidative stress, and TRPA1 engagement, contributing to pain in a mouse model of endometriosis.
- Published
- 2024
- Full Text
- View/download PDF
31. DiaCorrect: Error Correction Back-end For Speaker Diarization
- Author
-
Han, Jiangyu, Landini, Federico, Rohdin, Johan, Diez, Mireia, Burget, Lukas, Cao, Yuhang, Lu, Heng, and Cernocky, Jan
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Computation and Language ,Computer Science - Sound - Abstract
In this work, we propose an error correction framework, named DiaCorrect, to refine the output of a diarization system in a simple yet effective way. This method is inspired by error correction techniques in automatic speech recognition. Our model consists of two parallel convolutional encoders and a transform-based decoder. By exploiting the interactions between the input recording and the initial system's outputs, DiaCorrect can automatically correct the initial speaker activities to minimize the diarization errors. Experiments on 2-speaker telephony data show that the proposed DiaCorrect can effectively improve the initial model's results. Our source code is publicly available at https://github.com/BUTSpeechFIT/diacorrect., Comment: Submitted to ICASSP 2024
- Published
- 2023
32. Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Morton-Blake, Iwan, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, ZHANG, Lei, Zhang, Mohan, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Züfle, Jan
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China. The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage. Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios. The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN., Comment: 24 pages, 9 figures, accepted for the publication at JCAP
- Published
- 2023
33. Cooling bosons by dimensional reduction
- Author
-
Guo, Yanliang, Yao, Hepeng, Dhar, Sudipta, Pizzino, Lorenzo, Horvath, Milena, Giamarchi, Thierry, Landini, Manuele, and Nägerl, Hanns-Christoph
- Subjects
Condensed Matter - Quantum Gases - Abstract
Cold atomic gases provide a remarkable testbed to study the physics of interacting many-body quantum systems. They have started to play a major role as quantum simulators, given the high degree of control that is possible. A crucial element is given by the necessarily non-zero temperature. However cooling to the required ultralow temperatures or even simply measuring the temperature directly on the system can prove to be very challenging tasks. Here, we implement thermometry on strongly interacting two- and one-dimensional Bose gases with high sensitivity in the nano-Kelvin temperature range. Our method is aided by the fact that the decay of the first-order correlation function is very sensitive to the temperature when interactions are strong. We find that there may be a significant temperature variation when the three-dimensional quantum gas is cut into two-dimensional slices or into one-dimensional tubes. Strikingly, the temperature for the one-dimensional case can be much lower than the initial temperature. Our findings show that this decrease results from the interplay of dimensional reduction and strong interactions.
- Published
- 2023
34. Experimental Observation of the 2D-1D Dimensional Crossover in Strongly Interacting Ultracold Bosons
- Author
-
Guo, Yanliang, Yao, Hepeng, Ramanjanappa, Satwik, Dhar, Sudipta, Horvath, Milena, Pizzino, Lorenzo, Giamarchi, Thierry, Landini, Manuele, and Nägerl, Hanns-Christoph
- Subjects
Condensed Matter - Quantum Gases - Abstract
Dimensionality plays an essential role in determining the nature and properties of a physical system. For quantum systems the impact of interactions and fluctuations is enhanced in lower dimensions, leading to a great diversity of genuine quantum effects for reduced dimensionality. In most cases, the dimension is fixed to some integer value. Here, we experimentally probe the dimensional crossover from two to one dimension using strongly interacting ultracold bosons in variable lattice potentials and compare the data to ab-initio theory that takes into account non-homogeneous trapping and non-zero temperature. From a precise measurement of the momentum distribution we analyze the characteristic decay of the one-body correlation function in the two dimensionalities and then track how the decay is modified in the crossover. A varying two-slope structure is revealed, reflecting the fact that the particles see their dimensionality as being one or two depending on whether they are probed on short or long distances, respectively. Our observations demonstrate how quantum properties in the strongly-correlated regime evolve in the dimensional crossover as a result of the interplay between dimensionality, interactions, and temperature.
- Published
- 2023
35. Particle monitoring capability of the Solar Orbiter Metis coronagraph through the increasing phase of solar cycle 25
- Author
-
Grimani, Catia, Andretta, Vincenzo, Antonucci, Ester, Chioetto, Paolo, Da Deppo, Vania, Fabi, Michele, Gissot, Samuel, Jerse, Giovanna, Messerotti, Mauro, Naletto, Giampiero, Pancrazzi, Maurizio, Persici, Andrea, Plainaki, Christina, Romoli, Marco, Sabbatini, Federico, Spadaro, Daniele, Stangalini, Marco, Telloni, Daniele, Teriaca, Luca, Uslenghi, Michela, Villani, Mattia, Abbo, Lucia, Burtovoi, Aleksandr, Frassati, Federica, Landini, Federico, Nicolini, Giana, Russano, Giuliana, Sasso, Clementina, and Susino, Roberto
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment ,Physics - Space Physics - Abstract
Context. Galactic cosmic rays (GCRs) and solar particles with energies greater than tens of MeV penetrate spacecraft and instruments hosted aboard space missions. The Solar Orbiter Metis coronagraph is aimed at observing the solar corona in both visible (VL) and ultraviolet (UV) light. Particle tracks are observed in the Metis images of the corona. An algorithm has been implemented in the Metis processing electronics to detect the VL image pixels crossed by cosmic rays. This algorithm was initially enabled for the VL instrument only, since the process of separating the particle tracks in the UV images has proven to be very challenging. Aims. We study the impact of the overall bulk of particles of galactic and solar origin on the Metis coronagraph images. We discuss the effects of the increasing solar activity after the Solar Orbiter mission launch on the secondary particle production in the spacecraft. Methods. We compared Monte Carlo simulations of GCRs crossing or interacting in the Metis VL CMOS sensor to observations gathered in 2020 and 2022. We also evaluated the impact of solar energetic particle events of different intensities on the Metis images. Results. The study of the role of abundant and rare cosmic rays in firing pixels in the Metis VL images of the corona allows us to estimate the efficiency of the algorithm applied for cosmic-ray track removal from the images and to demonstrate that the instrument performance had remained unchanged during the first two years of the Solar Orbiter operations. The outcome of this work can be used to estimate the Solar Orbiter instrument's deep charging and the order of magnitude for energetic particles crossing the images of Metis and other instruments such as STIX and EUI., Comment: 8 pages, 6 figures
- Published
- 2023
- Full Text
- View/download PDF
36. Observation of the 2D–1D crossover in strongly interacting ultracold bosons
- Author
-
Guo, Yanliang, Yao, Hepeng, Ramanjanappa, Satwik, Dhar, Sudipta, Horvath, Milena, Pizzino, Lorenzo, Giamarchi, Thierry, Landini, Manuele, and Nägerl, Hanns-Christoph
- Published
- 2024
- Full Text
- View/download PDF
37. An uneven landscape of public services for people of color: identifying endogeneity in the relationship between local race composition and public expenditure
- Author
-
Landini, Austin
- Published
- 2024
- Full Text
- View/download PDF
38. Coronal Heating Rate in the Slow Solar Wind
- Author
-
Telloni, Daniele, Romoli, Marco, Velli, Marco, Zank, Gary P., Adhikari, Laxman, Downs, Cooper, Burtovoi, Aleksandr, Susino, Roberto, Spadaro, Daniele, Zhao, Lingling, Liberatore, Alessandro, Shi, Chen, De Leo, Yara, Abbo, Lucia, Frassati, Federica, Jerse, Giovanna, Landini, Federico, Nicolini, Gianalfredo, Pancrazzi, Maurizio, Russano, Giuliana, Sasso, Clementina, Andretta, Vincenzo, Da Deppo, Vania, Fineschi, Silvano, Grimani, Catia, Heinzel, Petr, Moses, John D., Naletto, Giampiero, Stangalini, Marco, Teriaca, Luca, Uslenghi, Michela, Berlicki, Arkadiusz, Bruno, Roberto, Capobianco, Gerardo, Capuano, Giuseppe E., Casini, Chiara, Casti, Marta, Chioetto, Paolo, Corso, Alain J., D'Amicis, Raffaella, Fabi, Michele, Frassetto, Fabio, Giarrusso, Marina, Giordano, Silvio, Guglielmino, Salvo L., Magli, Enrico, Massone, Giuseppe, Messerotti, Mauro, Nisticò, Giuseppe, Pelizzo, Maria G., Reale, Fabio, Romano, Paolo, Schühle, Udo, Solanki, Sami K., Straus, Thomas, Ventura, Rita, Volpicelli, Cosimo A., Zangrilli, Luca, Zimbardo, Gaetano, Zuppella, Paola, Bale, Stuart D., and Kasper, Justin C.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
This Letter reports the first observational estimate of the heating rate in the slowly expanding solar corona. The analysis exploits the simultaneous remote and local observations of the same coronal plasma volume with the Solar Orbiter/Metis and the Parker Solar Probe instruments, respectively, and relies on the basic solar wind magnetohydrodynamic equations. As expected, energy losses are a minor fraction of the solar wind energy flux, since most of the energy dissipation that feeds the heating and acceleration of the coronal flow occurs much closer to the Sun than the heights probed in the present study, which range from 6.3 to 13.3 solar radii. The energy deposited to the supersonic wind is then used to explain the observed slight residual wind acceleration and to maintain the plasma in a non-adiabatic state. As derived in the Wentzel-Kramers-Brillouin limit, the present energy transfer rate estimates provide a lower limit, which can be very useful in refining the turbulence-based modeling of coronal heating and subsequent solar wind acceleration.
- Published
- 2023
39. JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Bick, Daniel, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callegari, Riccardo, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Guoming, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Daozheng, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meinusch, Artur, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Sawatzki, Julia, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, Volpe, Cristina, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Guoqing, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
We discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande., Comment: 25 pages, 9 figures, matches the publised version
- Published
- 2023
- Full Text
- View/download PDF
40. Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter
- Author
-
Auchère, Berghmans, Dumesnil, Halain, -P., J., Mercier, Rochus, Delmotte, François, Hermans, Hervier, Kraaikamp, Meltchakov, Morinaud, Philippon, Smith, J., P., Stegen, Verbeeck, Zhang, Y., X., Andretta, Abbo, Buchlin, Frassati, Gissot, Gyo, Harra, Jerse, Landini, Mierla, Nicula, Parenti, Renotte, Romoli, Russano, Sasso, Schühle, Schmutz, Soubrié, Susino, Teriaca, West, Zhukov, and N, A.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Most observations of the solar corona beyond 2 Rs consist of broadband visible light imagery from coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the VUV range, very few additional observations have been achieved since the pioneering results of UVCS. One of the objectives of the Full Sun Imager (FSI) channel of the EUI telescope on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of Fe IX/X (formed in the corona around 1 MK) and by the resonance line of He II (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. FSI detects signals at 17.4 nm up to the edge of its FOV (7~Rs), which is about twice further than was previously possible. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. The very-wide-field observations of FSI are paving the way for future dedicated instruments.
- Published
- 2023
- Full Text
- View/download PDF
41. Multi-Stream Extension of Variational Bayesian HMM Clustering (MS-VBx) for Combined End-to-End and Vector Clustering-based Diarization
- Author
-
Delcroix, Marc, Tawara, Naohiro, Diez, Mireia, Landini, Federico, Silnova, Anna, Ogawa, Atsunori, Nakatani, Tomohiro, Burget, Lukas, and Araki, Shoko
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
Combining end-to-end neural speaker diarization (EEND) with vector clustering (VC), known as EEND-VC, has gained interest for leveraging the strengths of both methods. EEND-VC estimates activities and speaker embeddings for all speakers within an audio chunk and uses VC to associate these activities with speaker identities across different chunks. EEND-VC generates thus multiple streams of embeddings, one for each speaker in a chunk. We can cluster these embeddings using constrained agglomerative hierarchical clustering (cAHC), ensuring embeddings from the same chunk belong to different clusters. This paper introduces an alternative clustering approach, a multi-stream extension of the successful Bayesian HMM clustering of x-vectors (VBx), called MS-VBx. Experiments on three datasets demonstrate that MS-VBx outperforms cAHC in diarization and speaker counting performance., Comment: Accepted at Interspeech 2023
- Published
- 2023
42. Utilising Narrative Medicine to Identify Key Factors Affecting Quality of Life in Dry Eye Disease: An Italian Multicentre Study
- Author
-
Pasquale Aragona, Stefano Barabino, Ertugrul Akbas, Robert Ryan, Linda Landini, Maria G. Marini, Alessandra Fiorencis, Antonietta Cappuccio, Andrea Leonardi, Antonio Vercesi, Rino Frisina, Francesco Bandello, Luigi Berchicci, Emanuela Aragona, Francesco Semeraro, Vito Romano, Igor Di Carlo, Michele Reibaldi, Andrea Ghilardi, Stefano De Cillà, Giorgio Marchini, Daniele Tognetto, Luigi Fontana, Piera Versura, Domenico D’Eliseo, Alessandro Mularoni, Carlo Cagini, Rita Mencucci, Marco Coassin, Antonio Di Zazzo, Stanislao Rizzo, Romina Fasciani, Luca Gualdi, Andrea Cusumano, Leopoldo Spadea, Emily Cantera, Vincenzo Scorcia, Giuseppe Giannaccare, Pasquale Rosa, Salvatore Troisi, Antonio Provenzano, Francesca Simonelli, Michele Marullo, Lorenza Ciracì, Ciro Costagliola, Vito Primavera, Caterina Gagliano, Antonio Pinna, Alessio Giovanni, Francesco Boscia, Aldo Gelso, Leonardo Mastropasqua, Enza Bonfiglio, Maurizio Rolando, and Stefano Bonini
- Subjects
Dry eye disease ,Patient experience ,Narrative medicine ,Quality of life ,Coping strategies ,Ophthalmology ,RE1-994 - Abstract
Abstract Introduction Despite an improved understanding of its pathogenesis, dry eye disease (DED) remains relatively underestimated and its treatment challenging. A better alignment between the clinical evaluation and the patient self-assessment also requires capturing the whole patient experience of DED. This project aimed to unveil this experience through narrative medicine (NM). Methods The project involved 38 expert centres in Italy and one in San Marino, targeting adult patients with DED, their informal caregivers and their treating ophthalmologists. Written narratives and sociodemographic and quality of life (QoL)-related data were anonymously collected through the project’s webpage. Narratives were analysed through MAXQDA (VERBI Software, Berlin, Germany), NM classifications and content analysis. Results A total of 171 patients with DED, 37 informal caregivers and 81 ophthalmologists participated in the research. DED was defined as a disabling condition by 19% of patients and 35% of caregivers; 70% of patients reported that a therapeutic alliance is an integral part of DED treatment and 32% hope for more effective therapies. Forty-four per cent of patients assessed their own QoL as good; however, DED emerged as importantly impacting work performance and social events. DED physical, emotional and economic burden and the cruciality of a trusting care relationship represent the main themes that emerged across all narratives, while empathy and effective treatment are among the factors favouring coping with DED. Conclusion This project marked a pioneering initiative investigating the lived experience of patients with DED through NM, simultaneously involving all viewpoints involved in the care pathway. NM enabled the unveiling of factors favouring the ability to cope with DED and its associated QoL implications and provided valuable insights to improve the therapeutic alliance.
- Published
- 2024
- Full Text
- View/download PDF
43. Multimodal phenotyping of foveal hypoplasia in albinism and albino-like conditions: a pediatric case series with adaptive optics insights
- Author
-
Giacomo M. Bacci, Elisa Marziali, Sara Bargiacchi, Michel Paques, Gianni Virgili, Pina Fortunato, Marine Durand, Camilla Rocca, Angelica Pagliazzi, Viviana Palazzo, Lucia Tiberi, Debora Vergani, Samuela Landini, Angela Peron, Rosangela Artuso, Bianca Pacini, Monica Stabile, Andrea Sodi, and Roberto Caputo
- Subjects
Foveal hypoplasia ,Adaptive optics ,Cone mosaic ,OCT ,OCT-A ,TYR ,Medicine ,Science - Abstract
Abstract Aim of the present study is to evaluate the relationship between genetic and phenotypic data in a series of patients affected by grade I and II of foveal hypoplasia with stable fixation and good visual acuity using multimodal imaging techniques. All patients underwent complete clinical and instrumental assessment including structural Optical Coherence Tomography (OCT), OCT Angiography and Adaptive Optics (AO) imaging. Central macular thickness (CMT), inner nuclear layer (INL), vessel density in superficial capillary plexus were the main variables evaluated with OCT technology. Cone density, cone spacing, cone regularity, cone dispersion and angular density were the parameters evaluated with AO. Genetic evaluation and trio exome sequencing were performed in all affected individuals. Eight patients (3 males and 5 females) with a mean age of 12.62 years (range 8–18) were enrolled. The mean best corrected visual acuity (BCVA) was 0.18 ± 0.13 logMAR, mean CMT was 291.9 ± 16.6 µm and INL was 26.2 ± 4.6 µm. The absence of a foveal avascular zone (FAZ) was documented by examination of OCT-A in seven patients in the superficial capillary plexus. However, there was a partial FAZ in the deep plexus in patients P5 and P8. Of note, all the patients presented with major retinal vessels clearly crossing the foveal center. All individuals exhibited a grade I or II of foveal hypoplasia. In 5 patients molecular analyses showed an extremely mild form of albinism caused by compound heterozygosity of a TYR pathogenic variant and the hypomorphic p.[Ser192Tyr;Arg402Gln] haplotype. One patient had Waardenburg syndrome type 2A caused by a de novo variant in MITF. Two patients had inconclusive molecular analyses. All the patients displayed abnormalities on OCT-A. Photoreceptor count did not differ from normal subjects according to the current literature, but qualitative analysis of AO imaging showed distinctive features likely related to an abnormal pigment distribution in this subset of individuals. In patients with foveal hypoplasia, genetic and multimodal imaging data, including AO findings, can help understand the physiopathology of the foveal hypoplasia phenotype. This study confirms that cone density and visual function can both be preserved despite the absence of a pit.
- Published
- 2024
- Full Text
- View/download PDF
44. An association sequence suitable for producing ground-state RbCs molecules in optical lattices
- Author
-
Das, Arpita, Gregory, Philip D., Takekoshi, Tetsu, Fernley, Luke, Landini, Manuele, Hutson, Jeremy M., Cornish, Simon L., and Nägerl, Hanns-Christoph
- Subjects
Physics - Atomic Physics ,Condensed Matter - Quantum Gases - Abstract
We identify a route for the production of $^{87}$Rb$^{133}$Cs molecules in the $\textrm{X} \, ^1\Sigma^+$ rovibronic ground state that is compatible with efficient mixing of the atoms in optical lattices. We first construct a model for the excited-state structure using constants found by fitting to spectroscopy of the relevant $\textrm{a} \, ^3\Sigma^+ \rightarrow \textrm{b} \, ^3\Pi_1$ transitions at 181.5 G and 217.1 G. We then compare the predicted transition dipole matrix elements from this model to those found for the transitions that have been successfully used for STIRAP at 181.5 G. We form molecules by magnetoassociation on a broad interspecies Feshbach resonance at 352.7 G and explore the pattern of Feshbach states near 305 G. This allows us to navigate to a suitable initial state for STIRAP by jumping across an avoided crossing with radiofrequency radiation. We identify suitable transitions for STIRAP at 305 G. We characterize these transitions experimentally and demonstrate STIRAP to a single hyperfine level of the ground state with a one-way efficiency of 85(4)%., Comment: 21 pages, 8 figures
- Published
- 2023
45. The JUNO experiment Top Tracker
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Drapier, Olivier, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Felici, Giulietto, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Gerasimov, Vladimir, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Gursky, Semen, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Kaixuan, Huang, Wenhao, Huang, Qinhua, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yankai, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Romanov, Victor, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Sawatzki, Julia, Schever, Michaela, Schuler, Jacky, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Troni, Giancarlo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO's water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation., Comment: 20 pages
- Published
- 2023
- Full Text
- View/download PDF
46. JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, Züfle, Jan, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO's large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves.
- Published
- 2023
47. Does Turbulence along the Coronal Current Sheet Drive Ion Cyclotron Waves?
- Author
-
Telloni, Daniele, Zank, Gary P., Adhikari, Laxman, Zhao, Lingling, Susino, Roberto, Antonucci, Ester, Fineschi, Silvano, Stangalini, Marco, Grimani, Catia, Sorriso-Valvo, Luca, Verscharen, Daniel, Marino, Raffaele, Giordano, Silvio, D'Amicis, Raffaella, Perrone, Denise, Carbone, Francesco, Liberatore, Alessandro, Bruno, Roberto, Zimbardo, Gaetano, Romoli, Marco, Andretta, Vincenzo, Da Deppo, Vania, Heinzel, Petr, Moses, John D., Naletto, Giampiero, Nicolini, Gianalfredo, Spadaro, Daniele, Teriaca, Luca, Burtovoi, Aleksandr, De Leo, Yara, Jerse, Giovanna, Landini, Federico, Pancrazzi, Maurizio, Sasso, Clementina, and Slemer, Alessandra
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Evidence for the presence of ion cyclotron waves, driven by turbulence, at the boundaries of the current sheet is reported in this paper. By exploiting the full potential of the joint observations performed by Parker Solar Probe and the Metis coronagraph on board Solar Orbiter, local measurements of the solar wind can be linked with the large-scale structures of the solar corona. The results suggest that the dynamics of the current sheet layers generates turbulence, which in turn creates a sufficiently strong temperature anisotropy to make the solar-wind plasma unstable to anisotropy-driven instabilities such as the Alfv\'en ion-cyclotron, mirror-mode, and firehose instabilities. The study of the polarization state of high-frequency magnetic fluctuations reveals that ion cyclotron waves are indeed present along the current sheet, thus linking the magnetic topology of the remotely imaged coronal source regions with the wave bursts observed in situ. The present results may allow improvement of state-of-the-art models based on the ion cyclotron mechanism, providing new insights into the processes involved in coronal heating., Comment: 12 pages
- Published
- 2023
- Full Text
- View/download PDF
48. Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics
- Author
-
Triozzi, Riccardo, Serafini, Andrea, Bellato, Marco, Bergnoli, Antonio, Bolognesi, Matteo, Brugnera, Riccardo, Cerrone, Vanessa, Chen, Chao, Clerbaux, Barbara, Coppi, Alberto, Corti, Daniele, Corso, Flavio dal, Dong, Jianmeng, Dou, Wei, Fan, Lei, Garfagnini, Alberto, Gavrikov, Arsenii, Gong, Guanghua, Grassi, Marco, Guizzetti, Rosa Maria, Hang, Shuang, He, Cong, Hu, Jun, Isocrate, Roberto, Jelmini, Beatrice, Ji, Xiaolu, Jiang, Xiaoshan, Li, Fei, Liang, Zehong, Lippi, Ivano, Liu, Hongbang, Liu, Hongbin, Liu, Shenghui, Liu, Xuewei, Luo, Daibin, Luo, Ronghua, Marini, Filippo, Mazzaro, Daniele, Modenese, Luciano, Molla, Marta Colomer, Ning, Zhe, Peng, Yu, Petitjean, Pierre-Alexandre, Pitacco, Alberto, Qi, Mengyao, Ramina, Loris, Rampazzo, Mirco, Rebeschini, Massimo, Redchuk, Mariia, Sun, Yunhua, Triossi, Andrea, Veronese, Fabio, von Sturm, Katharina, Wang, Peiliang, Wang, Peng, Wang, Yangfu, Wang, Yusheng, Wang, Yuyi, Wang, Zheng, Wei, Ping, Weng, Jun, Xian, Shishen, Xie, Xiaochuan, Xu, Benda, Xu, Chuang, Xu, Donglian, Xu, Hai, Yan, Xiongbo, Yan, Ziyue, Yang, Fengfan, Yang, Yan, Yang, Yifan, Ye, Mei, Zeng, Tingxuan, Zhang, Shuihan, Zhang, Wei, Zhang, Aiqiang, Zhang, Bin, Zhao, Siyao, Zi, Changge, Aiello, Sebastiano, Andronico, Giuseppe, Antonelli, Vito, Barresi, Andrea, Basilico, Davide, Beretta, Marco, Brigatti, Augusto, Bruno, Riccardo, Budano, Antonio, Caccianiga, Barbara, Cammi, Antonio, Campese, Stefano, Chiesa, Davide, Clementi, Catia, Cordelli, Marco, Dusini, Stefano, Fabbri, Andrea, Felici, Giulietto, Ferraro, Federico, Giammarchi, Marco Giulio, Landini, Cecilia, Lombardi, Paolo, Lombardo, Claudio, Maino, Andrea, Mantovani, Fabio, Mari, Stefano Maria, Martini, Agnese, Meroni, Emanuela, Miramonti, Lino, Montuschi, Michele, Nastasi, Massimiliano, Orestano, Domizia, Ortica, Fausto, Paoloni, Alessandro, Parmeggiano, Sergio, Petrucci, Fabrizio, Previtali, Ezio, Ranucci, Gioacchino, Re, Alessandra Carlotta, Ricci, Barbara, Romani, Aldo, Saggese, Paolo, Sanfilippo, Simone, Sirignano, Chiara, Sisti, Monica, Stanco, Luca, Strati, Virginia, Tortorici, Francesco, Tuvé, Cristina, Venettacci, Carlo, Verde, Giuseppe, and Votano, Lucia
- Subjects
Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics.
- Published
- 2023
- Full Text
- View/download PDF
49. Slow wind belt in the quiet solar corona
- Author
-
Antonucci, E., Downs, C., Capuano, G. E., Spadaro, D., Susino, R., Telloni, D., Andretta, V., Da Deppo, V., De Leo, Y., Fineschi, S., Frassetto, F., Landini, F., Naletto, G., Nicolini, G., Pancrazzi, M., Romoli, M., Stangalini, M., Teriaca, L., and Uslenghi, M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
The slow solar wind belt in the quiet corona, observed with the Metis coronagraph on board Solar Orbiter on May 15, 2020, during the activity minimum of the cycle 24, in a field of view extending from 3.8 $R_\odot$ to 7.0 $R_\odot$, is formed by a slow and dense wind stream running along the coronal current sheet, accelerating in the radial direction and reaching at 6.8 $R_\odot$ a speed within 150 km s$^{-1}$ and 190 km s$^{-1}$, depending on the assumptions on the velocity distribution of the neutral hydrogen atoms in the coronal plasma. The slow stream is separated by thin regions of high velocity shear from faster streams, almost symmetric relative to the current sheet, with peak velocity within 175 km s$^{-1}$ and 230 km s$^{-1}$ at the same coronal level. The density-velocity structure of the slow wind zone is discussed in terms of the expansion factor of the open magnetic field lines that is known to be related to the speed of the quasi-steady solar wind, and in relation to the presence of a web of quasi separatrix layers, S-web, the potential sites of reconnection that release coronal plasma into the wind. The parameters characterizing the coronal magnetic field lines are derived from 3D MHD model calculations. The S-web is found to coincide with the latitudinal region where the slow wind is observed in the outer corona and is surrounded by thin layers of open field lines expanding in a non-monotonic way.
- Published
- 2023
- Full Text
- View/download PDF
50. In-flight validation of Metis Visible-light Polarimeter Coronagraph on board Solar Orbiter
- Author
-
Liberatore, A., Fineschi, S., Casti, M., Capobianco, G., Abbo, L., Andretta, V., Da Deppo, V., Fabi, M., Frassati, F., Jerse, G., Landini, F., Moses, D., Naletto, G., Nicolini, G., Pancrazzi, M., Romoli, M., Russano, G., Sasso, C., Spadaro, D., Stangalini, M., Susino, R., Telloni, D., Teriaca, L., and Uslenghi, M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Context. The Metis coronagraph is one of the remote-sensing instruments of the ESA/NASA Solar Orbiter mission. Metis is aimed at the study of the solar atmosphere and solar wind by simultaneously acquiring images of the solar corona at two different wavelengths; visible-light (VL) within a band ranging from 580 nm to 640 nm, and in the HI Ly-alpha 121.6 +/- 10 nm ultraviolet (UV) light. The visible-light channel includes a polarimeter with electro-optically modulating Liquid Crystal Variable Retarders (LCVRs) to measure the linearly polarized brightness of the K-corona to derive the electron density. Aims. In this paper, we present the first in-flight validation results of the Metis polarimetric channel together with a comparison to the on-ground calibrations. It is the validation of the first use in deep space (with hard radiation environment) of an electro-optical device: a liquid crystal-based polarimeter. Methods. We used the orientation of the K-corona's linear polarization vector during the spacecraft roll maneuvers for the in-flight calibration. Results. The first in-flight validation of the Metis coronagraph on-board Solar Orbiter shows a good agreement with the on-ground measurements. It confirms the expected visible-light channel polarimetric performance. A final comparison between the first pB obtained by Metis with the polarized brightness (pB) obtained by the space-based coronagraph LASCO and the ground-based coronagraph KCor shows the consistency of the Metis calibrated results., Comment: 8 pages, 13 figures, 3 tables, paper
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.