1. Low-voltage electrostatic field enhances the frozen force of -12 ℃ to suppress oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing.
- Author
-
Yang C, Wu G, Liu Y, Li Y, Zhang C, Liu C, and Li X
- Subjects
- Animals, Freezing, Oxidation-Reduction, Sheep, Static Electricity, Muscle Proteins chemistry, Oxidative Stress, Red Meat
- Abstract
The effect of low-voltage electrostatic field (LVEF) assisted -9 °C (LVEF-9) and -12 °C (LVEF-12) frozen, non-LVEF-assisted -9 °C (NLVEF-9) and -12 °C (NLVEF-12) frozen, and conventional frozen (CF-18, -18 °C) storage on the muscle microstructure and the oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing was investigated. Compared with NLVEF-9, LVEF-9, and NLVEF-12, LVEF-12 maintained the better integrity of muscle microstructure, demonstrated by smaller holes, more complete Z-line and M-line, and no significant difference with CF-18 (P > 0.05). Furthermore, LVEF-12 effectively inhibited protein oxidative denaturation as shown by the lower carbonyl content, surface hydrophobicity, and higher total/active sulfhydryl groups and Ca
2+ -ATPase activity. Moreover, LVEF-12 effectively maintained the integrity of the secondary and tertiary structure of proteins, reduced cross-linking aggregation of proteins, and sustained better functional properties, as shown by higher α-helix content, fluorescence intensity, protein solubility, and lower R-value, disulfide bonds., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF