69,629 results on '"Klimov, A. A."'
Search Results
2. LLC TAMBOV BACON invites tenders for Purchase of Reagents (Tbbf02889, Tbtb07619, Tsorp03407) Klimov, Chernov, Kalnitsky Mpp Tb/Rap/Bf
- Subjects
Chemical tests and reagents ,News, opinion and commentary - Abstract
LLC TAMBOV BACON, Russian Federation has invited tenders for Purchase of Reagents (Tbbf02889, Tbtb07619, Tsorp03407) Klimov, Chernov, Kalnitsky Mpp Tb/Rap/Bf. Tender Notice No: 3749398 Deadline: August 9, 2024 Copyright © [...]
- Published
- 2024
3. (XMET) NOTIFICATION ON CORPORATE ACTION 'EXTRAORDINARY OR SPECIAL GENERAL MEETING.' FOR AO 'ODK-KLIMOV' ITN 7802375335 (SHARES 1-01-04058-D|ISIN RU000A100WQ4, 1-01-04058-D-005D|ISIN RU000A106VZ4)
- Subjects
Stocks ,General interest ,News, opinion and commentary - Abstract
Moscow: National Settlement Depository (Moscow Exchange Group) has issued the following news release: Corporate Action Details Corporate Action Reference 974799 Corporate Action Type Code XMET Corporate Action Type Extraordinary or [...]
- Published
- 2024
4. Supplementary material 3 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
5. Supplementary material 8 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Supplementary material 9 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
7. Supplementary material 4 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
8. Supplementary material 5 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
9. Supplementary material 7 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Supplementary material 6 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Supplementary material 2 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
12. Supplementary material 1 from: Reshetnikov AN, Zibrova MG, Ayaz D, Bhattarai S, Borodin OV, Borzée A, Brejcha J, Çiçek K, Dimaki M, Doronin IV, Drobenkov SM, Gichikhanova UA, Gladkova AY, Gordeev DA, Ioannidis Y, Ilyukh MP, Interesova EA, Jadhav TD, Karabanov DP, Khabibullin VF, Khabilov TK, Khan MMH, Kidov AA, Klimov AS, Kochetkov DN, Kolbintsev VG, Kuzmin SL, Lotiev KY, Louppova NE, Lvov VD, Lyapkov SM, Martynenko IM, Maslova IV, Masroor R, Mazanaeva LF, Milko DA, Milto KD, Mozaffari O, Nguyen TQ, Novitsky RV, Petrovskiy AB, Prelovskiy VA, Serbin VV, Shi H-t, Skalon NV, Struijk RPJH, Taniguchi M, Tarkhnishvili D, Tsurkan VF, Tyutenkov OY, Ushakov MV, Vekhov DA, Xiao F, Yakimov AV, Yakovleva TI, Yang P, Zeleev DF, Petrosyan VG (2023) Rarely naturalized, but widespread and even invasive: the paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 81: 91-127. https://doi.org/10.3897/neobiota.81.90473
- Author
-
Reshetnikov, Andrey N., primary, Zibrova, Marina G., additional, Ayaz, Dinçer, additional, Bhattarai, Santosh, additional, Borodin, Oleg V., additional, Borzée, Amaël, additional, Brejcha, Jindřich, additional, Çiçek, Kerim, additional, Dimaki, Maria, additional, Doronin, Igor V., additional, Drobenkov, Sergey M., additional, Gichikhanova, Uzlipat A., additional, Gladkova, Anastasia Y., additional, Gordeev, Dmitriy A., additional, Ioannidis, Yiannis, additional, Ilyukh, Mikhail P., additional, Interesova, Elena A., additional, Jadhav, Trupti D., additional, Karabanov, Dmitry P., additional, Khabibullin, Viner F., additional, Khabilov, Tolibjon K., additional, Khan, M. Monirul H., additional, Kidov, Artem A., additional, Klimov, Alexandr S., additional, Kochetkov, Denis N., additional, Kolbintsev, Vladimir G., additional, Kuzmin, Sergius L., additional, Lotiev, Konstantin Y., additional, Louppova, Nora E., additional, Lvov, Vladimir D., additional, Lyapkov, Sergey M., additional, Martynenko, Igor M., additional, Maslova, Irina V., additional, Masroor, Rafaqat, additional, Mazanaeva, Liudmila F., additional, Milko, Dmitriy A., additional, Milto, Konstantin D., additional, Mozaffari, Omid, additional, Nguyen, Truong Q., additional, Novitsky, Ruslan V., additional, Petrovskiy, Andrey B., additional, Prelovskiy, Vladimir A., additional, Serbin, Valentin V., additional, Shi, Hai-tao, additional, Skalon, Nikolay V., additional, Struijk, Richard P. J. H., additional, Taniguchi, Mari, additional, Tarkhnishvili, David, additional, Tsurkan, Vladimir F., additional, Tyutenkov, Oleg Y., additional, Ushakov, Mikhail V., additional, Vekhov, Dmitriy A., additional, Xiao, Fanrong, additional, Yakimov, Andrey V., additional, Yakovleva, Tatyana I., additional, Yang, Peimin, additional, Zeleev, Dmitriy F., additional, and Petrosyan, Varos G., additional
- Published
- 2023
- Full Text
- View/download PDF
13. Wetting-Layer-Assisted Synthesis of Inverted CdSe/PbSe Quantum Dots and their Photophysical and Photo-Electrical Properties
- Author
-
Sayevich, Vladimir, Kim, Whi Dong, Robinson, Zachary L., Kozlov, Oleg V., Livache, Clément, Ahn, Namyoung, Jung, Heeyoung, and Klimov, Victor I.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Materials Science - Abstract
Heterostructured quantum dots (QDs) based on narrow-gap PbSe and wide-gap CdSe have been studied with an eye on their prospective applications in near-infrared (NIR) light sources, photodetectors, and solar cells. The most common structural motif is a spherical QD comprising a PbSe core enclosed into a CdSe shell. However, the potential barrier created by the CdSe shell complicates extraction of band-edge charge carriers from the QD. Therefore, conventional PbSe/CdSe QDs are not suitable for applications in practical photoconversion devices. Here we report inverted CdSe/PbSe core/shell QDs that overcome this drawback. In these structures, both photocarriers (electron and hole) exhibit a significant degree of shell localization and are therefore free to move within the QD solid and be extracted into an external circuit. To create such QDs, we employ a novel synthetic method in which a thin, atomically controlled wetting layer is used to homogenize the surface of the CdSe core and thus promote directionally uniform growth of the PbSe shell. Unlike noninverted QDs, inverted core/shell structures exhibit highly efficient photocarrier transport, making them excellent candidates for applications in practical photoconversion including photovoltaics, photodetection, and photochemistry., Comment: Total 39 pages, including main text, supporting information (SI), 5 main figures and 6 SI figures
- Published
- 2024
14. Photocurrent Enhancement due to Spin-Exchange Carrier Multiplication in Films of Manganese-Doped 'Inverted' CdSe/HgSe Quantum Dots
- Author
-
Noh, Jungchul, Livache, Clément, Hahm, Donghyo, Pinchetti, Valerio, Jin, Ho, Kim, Changjo, and Klimov, Victor I.
- Subjects
Condensed Matter - Materials Science - Abstract
Incorporation of manganese impurities into II-VI semiconductors results in a dramatic change in their properties due to strong exchange interactions between the Mn ion and the semiconductor host. In colloidal quantum dots (QDs), these interactions result in a rapid bidirectional energy transfer between the magnetic impurity and the QD intrinsic states, which is characterized by an extremely high energy transfer rate of more than ~5 eV/ps. This rate is higher than the rate of energy loss due to phonon emission (typically, ~1 eV/ps or less), so Mn-QD interactions could in principle be used to capture and utilize the kinetic energy of the hot carrier before it is lost to phonons. Here, we demonstrate that by using Mn-doped CdSe/HgSe core/shell QDs, we can efficiently convert the kinetic energy of a hot exciton into an additional electron-hole pair (exciton). This carrier multiplication process occurs through rapid capture of a hot exciton by a Mn ion, which then undergoes spin flip relaxation, producing two excitons near the QD band edge. Due to the inverted geometry of the CdSe/HgSe QDs, both electrons and holes resulting from carrier multiplication occupy the QD shell, allowing them to be easily extracted from the QD for potential use in electro-optical devices or chemical reactions., Comment: Main text (34 pages, 5 Figs) + Supplementary Info (9 pages, 9 Figures, 1 Table)
- Published
- 2024
15. Demonstrating dynamic surface codes
- Author
-
Eickbusch, Alec, McEwen, Matt, Sivak, Volodymyr, Bourassa, Alexandre, Atalaya, Juan, Claes, Jahan, Kafri, Dvir, Gidney, Craig, Warren, Christopher W., Gross, Jonathan, Opremcak, Alex, Miao, Nicholas Zobrist Kevin C., Roberts, Gabrielle, Satzinger, Kevin J., Bengtsson, Andreas, Neeley, Matthew, Livingston, William P., Greene, Alex, Rajeev, Acharya, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Frank, Arute, Arya, Kunal, Asfaw, Abraham, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Jenna, Bovaird, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Tim, Burger, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Alexander, Crook, L., Curtin, Ben, Das, Sayan, Barba, Alexander Del Toro, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya K., Dunsworth, Andrew, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gonzalo, Garcia, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Dietrich, Graumann, Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hiltermann, Reno, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Amir, Karamlou, H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Tiano, Lange-Dei, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Wing, Li, Yan, Lill, Alexander T., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Anthony, Megrant, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Oas, Logan, Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Rosenberg, Eliott, Rossi, Elizabeth, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Sergey, Vdovichev, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Yaxing, Zhang, Zhu, Ningfeng, Boixo, Sergio, Kelly, Julian, Smelyanskiy, Vadim, Neven, Hartmut, Bacon, Dave, Chen, Zijun, Klimov, Paul V., Roushan, Pedram, Neill, Charles, Chen, Yu, and Morvan, Alexis
- Subjects
Quantum Physics - Abstract
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, and $\Lambda_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design., Comment: 11 pages, 5 figures, Supplementary Information
- Published
- 2024
16. Scaling and logic in the color code on a superconducting quantum processor
- Author
-
Lacroix, Nathan, Bourassa, Alexandre, Heras, Francisco J. H., Zhang, Lei M., Bausch, Johannes, Senior, Andrew W., Edlich, Thomas, Shutty, Noah, Sivak, Volodymyr, Bengtsson, Andreas, McEwen, Matt, Higgott, Oscar, Kafri, Dvir, Claes, Jahan, Morvan, Alexis, Chen, Zijun, Zalcman, Adam, Madhuk, Sid, Acharya, Rajeev, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Blackwell, Sam, Bovaird, Jenna, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hiltermann, Reno, Hilton, Jeremy, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Li, Yin, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Y., Oas, Logan, Oliver, William D., Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Resnick, Rachel, Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Rossi, Elizabeth, Roushan, Pedram, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Kohli, Pushmeet, Davies, Alex, Boixo, Sergio, Kelly, Julian, Jones, Cody, Gidney, Craig, and Satzinger, Kevin J.
- Subjects
Quantum Physics - Abstract
Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code enables much more efficient logic, although it requires more complex stabilizer measurements and decoding techniques. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and so far, realizations of color codes have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations. Scaling the code distance from three to five suppresses logical errors by a factor of $\Lambda_{3/5}$ = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and furthermore that the color code may be more efficient than the surface code with modest device improvements. Using logical randomized benchmarking, we find that transversal Clifford gates add an error of only 0.0027(3), which is substantially less than the error of an idling error correction cycle. We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection (retaining about 75% of the data). Finally, we successfully teleport logical states between distance-three color codes using lattice surgery, with teleported state fidelities between 86.5(1)% and 90.7(1)%. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.
- Published
- 2024
17. Homeostasis and Sparsity in Transformer
- Author
-
Kotyuzanskiy, Leonid and Klimov, Artem
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
The transformer architecture has become an integral part of the field of modern neural networks, playing a crucial role in a variety of tasks, such as text generation, machine translation, image and audio processing, among others. There is also an alternative approach to building intelligent systems, proposed by Jeff Hawkins and inspired by the processes occurring in the neocortex. In our article we want to combine some of these ideas and to propose the use of homeostasis mechanisms, such as RFB-kWTA and "Smart" Inhibition, in the attention mechanism of the transformer and at the output of the transformer block, as well as conducting an experiment involving the introduction of sparse distributed representations of the transformer at various points. RFB-kWTA utilizes statistics of layer activations across time to adjust the entire layer, enhancing the values of rare activations while reducing those of frequent ones. "Smart" Inhibition also uses activation statistics to sample sparsity masks, with rarer activation times are more likely to be activated. Our proposed mechanisms significantly outperform the classical transformer 0.2768 BLEU and a model that only makes use of dropout in the attention mechanism and output of the transformer block 0.3007 BLEU, achieving a score of 0.3062 on the Multi30K dataset.
- Published
- 2024
18. Measurement of the double-differential cross section of muon-neutrino charged-current interactions with low hadronic energy in the NOvA Near Detector
- Author
-
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Dueñas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mislivec, A., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Porter, J. C. C., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Talukdar, N., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Titus, M., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Weber, C., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., and Zwaska, R.
- Subjects
High Energy Physics - Experiment - Abstract
The NOvA collaboration reports cross-section measurements for $\nu_{\mu}$ charged-current interactions with low hadronic energy (maximum kinetic energy of 250 MeV for protons and 175 MeV for pions) in the NOvA Near Detector. The results are presented as a double-differential cross section as a function of the direct observables of the final-state muon kinematics. Results are also presented as a single-differential cross section as a function of the derived square of the four-momentum transfer, $Q^{2}$, and as a function of the derived neutrino energy. The data correspond to an accumulated 8.09$\times10^{20}$ protons-on-target (POT) in the neutrino mode of the NuMI beam, with a narrow band of neutrino energies peaked at 1.8 GeV. The analysis provides a sample of neutrino-nucleus interactions with an enhanced fraction of quasi-elastic and two-particle-two-hole (2p2h) interactions. This enhancement allows quantitative comparisons with various nuclear models. We find strong disagreement between data and theory-based models in various regions of the muon kinematic phase space, especially in the forward muon direction., Comment: 20 pages, 12 figures. The second version includes an additional citation and adds four previously missing authors
- Published
- 2024
19. Observation of disorder-free localization and efficient disorder averaging on a quantum processor
- Author
-
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning.
- Published
- 2024
20. Measurement of d2sigma/d|q|dEavail in charged current neutrino-nucleus interactions at <Ev> = 1.86 GeV using the NOvA Near Detector
- Author
-
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Duenas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kuruppu, C. D., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Plunkett, R. K., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., and Zwaska, R.
- Subjects
High Energy Physics - Experiment - Abstract
Double- and single-differential cross sections for inclusive charged-current neutrino-nucleus scattering are reported for the kinematic domain 0 to 2 GeV/c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean muon-neutrino energy of 1.86 GeV. The measurements are based on an estimated 995,760 muon-neutrino CC interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole reactions is identified by the cross-section excess relative to predictions for neutrino-nucleus scattering that are constrained by a data control sample. Models for 2-particle-2- hole processes are rated by chi-square comparisons of the predicted-versus-measured muon-neutrino CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based Val`encia and SuSAv2 2p2h models., Comment: 20 pages, 15 figures. Accepted for publication in Physical Review D
- Published
- 2024
21. Vyacheslav (Slava) Klimov (1945–2017): A scientist par excellence, a great human being, a friend, and a Renaissance man
- Author
-
Allakhverdiev, Suleyman I., Zharmukhamedov, Sergey K., Rodionova, Margarita V., Shuvalov, Vladimir A., Dismukes, Charles, Shen, Jian-Ren, Barber, James, Samuelsson, Göran, and Govindjee
- Published
- 2018
- Full Text
- View/download PDF
22. Pergalumna (Pergalumna) cienfuegosensis Ermilov & Kolesnikov & Kontschán & Klimov 2023, sp. nov
- Author
-
Ermilov, Sergey G., Kolesnikov, Vasiliy B., Kontschán, Jenő, and Klimov, Pavel B.
- Subjects
Arthropoda ,Galumnidae ,Arachnida ,Animalia ,Biodiversity ,Sarcoptiformes ,Pergalumna ,Pergalumna cienfuegosensis ,Taxonomy - Abstract
Pergalumna (Pergalumna) cienfuegosensis sp. nov. (Figs 1, 2) Type material. Holotype (female) and eight paratypes (five males and three females): Cuba, 221′N, 807′W, Cienfuegos Province, Sierra del Escambray, El Nicho, leaf litter in mixed forest (unknown date and collector; collection of the Tyumen State University Museum of Zoology, Tyumen, Russia; Gashev et al. 2005). Additional (non-type) material: 26 specimens: same data as for the holotype and paratypes; 14 specimens: Cuba, 226′N, 816′W, leaf litter in riparian (200 m from ocean) mixed forest (unknown date and collector; collection of the Tyumen State University Museum of Zoology, Tyumen, Russia; Gashev et al. 2005). The holotype is deposited in the collection of the Senckenberg Museum of Natural History, Görlitz, Germany; eight paratypes and non-type material are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia. All specimens are preserved in 70% solution of ethanol with a drop of glycerol. Etymology. The species name cienfuegosensis refers to the place of origin of the type material, Cienfuegos Province. Diagnosis. Body length: 300–345. Body surface microgranulate; in some specimens, prodorsum with short longitudinal striae and/or notogastral region between porose areas Aa and A1 sparsely foveolate. Rostrum rounded. Rostral and lamellar setae medium-sized, setiform, roughened; le located on thin carina reaching from L; interlamellar seta vestigial; bothridial seta medium-sized, fusiform, with barbed head. Dorsosejugal porose area present.Dorsosejugal suture absent. Three pairs of porose areas developed: Aa elongate oval, located between setal alveoli la and lm, equally removed from them; A1 banana shaped; A3 oval. Median pore absent. Lyrifissure im located anterolaterally to A1 and removed from it. Epimeral and anogenital setae comparatively short, smooth. Circumpedal carina directed to insertion of 3b. Adanal lyrifissure located close and parallel to the middle of anal plate. Postanal porose area absent. Leg solenidion on tibia IV inserted in posterior part of the segment; strong tooth behind solenidion. Description of adult. Measurements. Body length: 330 (holotype), 300–345 (paratypes); notogaster width: 240 (holotype), 225–240 (paratypes). Integument (Figs 1A; 2A, E–H). Body color brown. Body surface densely microgranulate (visible under high magnification, 1000). Additionally, prodorsum (Fig. 2A) of specimens in population from riparian mixed forest nearly ocean with short longitudinal striae (versus without striae in population from mixed forest from El Nicho, Sierra del Escambray, Cienfuegos Province). Posterior part of prodorsum (anteriorly to interlamellar setae) with slight transverse striate band; posterior part of notogaster (behind adanal setae ad 1 and ad 2) often with slight archlike striate band or indistinct furrow. In some specimens notogastral region between porose areas Aa and A1 slightly sparsely foveolate (diameter of foveola up to 2). Antiaxial side of leg femora I–IV and trochanters III and IV partially striate and tuberculate. Prodorsum (Figs 1A, C; 2A). Rostrum slightly protruding, rounded. Lamellar and sublamellar lines thin, parallel, curving backwards. Rostral (22–26) and lamellar (30–34) setae setiform, roughened; le located close to L, inserted on thin carina reaching from L. Interlamellar seta vestigial. Bothridial seta (45–52) fusiform, head densely barbed. Dorsosejugal porose area oval (11–15 × 6), transversely oriented, located posterolaterally to insertion of in. Dorsophragma comparatively short, slightly elongate longitudinally. Notogaster (Figs 1A, C, D). Dorsosejugal suture completely absent. All notogastral setae represented by setal alveoli. Three pairs of porose areas developed, poorly bordered: Aa (34–45 × 7–11) transversely elongate oval, located between setal alveoli la and lm, equally removed from them; A1 (34–45 × 7–11) banana shaped; A3 (11– 13 × 7–9) oval. Median pore absent. Opisthonotal gland opening and all lyrifissures distinct: gla and im located anterolaterally to A1 and removed from it; ip anteriorly to p 2; ih and ips close to each other, between im and p 3. Gnathosoma (Figs 2B–D). Size of subcapitulum: 75–82 × 67–75; setae setiform: a (17–19) roughened; m (15–17) slightly barbed; h (9–11) smooth; a thickest, h thinnest; adoral seta (11–15) setiform, barbed. Length of chelicera: 112–116; cheliceral setae (cha: 34; chb: 22) setiform, barbed. Length of palp: 75–82; postpalpal seta (4) spiniform, smooth. Epimeral and lateral podosomal regions (Figs 1B, C). Anterior margin of ventral plate smooth. Epimeral setal formula: 1–0–2–3, setae (1a, 4a, 4b: 4; 3b, 3c, 4c: 11) setiform, smooth. Circumpedal carina medium-sized, directed to insertion of 3b. Anogenital region (Figs 1B–D). Genital (g 1: 11; others: 4), aggenital (4), anal (7–11), and adanal (7–11) setae setiform, smooth. Anterior edge of genital plate with three setae. Adanal lyrifissure located close and parallel to the middle of anal plate. Adanal setae ad 1 and ad 2 posteriorly, ad 3 laterally to anal plate; distance ad 1 – ad 2 slightly shorter than ad 2 – ad 3. Postanal porose area absent. Legs (Figs 2E–H). Median claw distinctly thicker than lateral claws, all slightly barbed on dorsal side. Tibia IV with dorsal tooth close and posteriorly to solenidion. Porose area on all femora and on trochanters III, IV well visible; proximoventral porose area on tarsi and distoventral porose area on tibiae not observed. Formulas of leg setation and solenidia: I (1–4–3–4–20) [1–2–2], II (1–4–3–4–15) [1–1–2], III (1–2–1–3–15) [1–1–0], IV (1–2–2–3– 12) [0–1–0]; homology of setae and solenidia indicated in Table 1. Famulus of tarsus I short inserted posterolaterally to solenidion ω 1. Solenidion on tibia IV inserted in posterior part of the segment. Note: Roman letters refer to normal setae, Greek letters to solenidia (except ɛ = famulus). Single quotation mark (’) designates setae on the anterior and double quotation mark (”) setae on the posterior side of a given leg segment; parentheses refer to a pair of setae. Remarks. Pergalumna (Pergalumna) cienfuegosensis sp. nov. is similar to P. (P.) cardosensis Pérez-Íñigo & Baggio, 1986 from the Neotropical region and P. (P.) infinita Mahunka, 2011 from Madagascar in main morphological traits: rostrum rounded; bothridial seta with developed head; dorsosejugal suture absent; three pairs of notogastral porose areas, with Aa transversely elongate, located between la and lm; interlamellar seta vestigial or absent. However, the new species differs from both species by the banana shaped (versus rounded) of notogastral porose area A1. Also, P. (P.) cardosensis has larger body size (length: 468 versus 300–345), short (versus mediumsized) lamellar seta, triangular (versus elongate oval) notogastral porose area Aa, and slightly barbed (versus densely barbed) head of bothridial seta; P. (P.) infinita has long (versus medium-sized) stalk of bothridial seta, and small (versus large) notogastral porose area Aa., Published as part of Ermilov, Sergey G., Kolesnikov, Vasiliy B., Kontschán, Jenő & Klimov, Pavel B., 2023, Taxonomic contribution to the knowledge of Galumnidae (Acari, Oribatida, Galumnidae) from Cuba, pp. 465-474 in Zootaxa 5258 (4) on pages 466-469, DOI: 10.11646/zootaxa.5258.4.7, http://zenodo.org/record/7784607, {"references":["Gashev, S. N., Elifanov, A. V. & Tolstikov, A. V. (2005) Zoological Museum of the Tyumen State University as the oldest center for studying biodiversity in the Tyumen District. Bulletin of the Tyumen State University, 3, 177 - 189.","Perez-Inigo, C. & Baggio, D. (1986) Oribates edaphiques du Bresil (III). Oribates de l'Ile du \" Cardoso \" (deuxieme partie). Acarologia, 27 (2), 163 - 179.","Mahunka, S. (2011) New and little known oribatid mites from Madagascar (Acari: Oribatida), II. Acta Zoologica Academiae Scientiarum Hungaricae, 57 (1), 1 - 21."]}
- Published
- 2023
- Full Text
- View/download PDF
23. Galumna (Galumna) gigantea Ermilov & Kolesnikov & Kontschán & Klimov 2023, sp. nov
- Author
-
Ermilov, Sergey G., Kolesnikov, Vasiliy B., Kontschán, Jenő, and Klimov, Pavel B.
- Subjects
Arthropoda ,Galumnidae ,Arachnida ,Animalia ,Biodiversity ,Galumna gigantea ,Sarcoptiformes ,Taxonomy ,Galumna - Abstract
Galumna (Galumna) gigantea sp. nov. (Fig. 4) Type material. Holotype (male) and four paratypes (two males and two females): Cuba, 221′N, 807′W, Cienfuegos Province, Sierra del Escambray, El Nicho, leaf litter in mixed forest (unknown date and collector; collection of the Tyumen State University Museum of Zoology, Tyumen, Russia; Gashev et al. 2005). The holotype is deposited in the collection of the Senckenberg Museum of Natural History, Görlitz, Germany; four paratypes are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia. All specimens are preserved in 70% solution of ethanol with a drop of glycerol. Etymology. The species name gigantea refers to the very big body size. Diagnosis. Body length: 1050–1155. Body surface microgranulate. Rostrum rounded. Lamellar and sublamellar lines slightly divergent distally, L directed to lateral side of prodorsum. Rostral, lamellar and interlamellar setae comparatively short,setiform,smooth; le located on L.Bothridial seta long, setiform,slightly roughened.Dorsosejugal porose area present. Dorsosejugal suture complete. Three pairs of porose areas developed: Aa boomerang-like; A1 long, narrowly arch-like; A3 long, narrowly elongate oval. Median pore absent. Lyrifissure im located close and anteriorly to A1. Epimeral and anogenital setae comparatively short, setiform, smooth. Circumpedal carina medium-sized, directed to 3b but not reaching it. Adanal lyrifissure located close and parallel to the posterior part of anal plate. Postanal porose area narrowly elongate oval. Leg solenidion on tibia IV inserted in anterior part of the segment. Description of adult. Measurements. Body length: 1095 (holotype), 1050–1155 (paratypes); notogaster width: 825 (holotype), 780–855 (paratypes). Integument. Body color black. Body surface densely microgranulate (visible under high magnification, 1000). Antiaxial side of leg femora I–IV and trochanters III and IV partially striate and tuberculate. Prodorsum (Figs 4A, C). Rostrum rounded. Lamellar and sublamellar lines thin, slightly divergent distally, L directed to lateral side of prodorsum, S curving backwards. Rostral (75–86), lamellar (75–86) and interlamellar (64– 71) setae setiform, smooth; le located on L. Bothridial seta (153–161) setiform, slightly roughened. Dorsosejugal porose area oval (49–60 × 13–15), transversely oriented, located posterolaterally to insertion of in. Dorsophragma medium-sized, elongate longitudinally. Notogaster (Figs 4A, C, D). Dorsosejugal suture complete, but median part slightly observed. All notogastral setae represented by setal alveoli. Three pairs of porose areas developed, clearly bordered: Aa boomerang-like (transverse part: 150–172 × 11–15; longitudinal part: 150–161 × 9–15); A1 (202–225 × 7–15) narrowly arch-like; A3 (150–176 × 7–15) narrowly elongate oval; la inserted posteriorly to transverse part of Aa. Median pore absent. Opisthonotal gland opening and all lyrifissures distinct: gla located anterolaterally to A1; im close and anteriorly to A1; ip between p 1 and p 2, nearer to p 1; ih and ips close to each other, anteriorly to p 3. Gnathosoma. Generally, similar to P. (P.) cienfuegosensis sp. nov. Size of subcapitulum: 243 × 225; setae (a: 49; m: 41; h: 26) setiform, roughened; a thickest, h thinnest; adoral seta (30) setiform, barbed. Length of chelicera: 315; cheliceral setae (cha: 116; chb: 71) setiform, barbed. Length of palp: 225; postpalpal seta (11) spiniform, smooth. Epimeral and lateral podosomal regions (Figs 4B, C). Anterior margin of ventral plate smooth. Epimeral setal formula: 2–0–1–3; setae (1a, 4a, 4b: 34–41; 1b, 3b, 4c: 64–71) setiform, smooth. Circumpedal carina mediumsized, directed to 3b but not reaching it. Anogenital region (Figs 4B–D). Genital, aggenital, anal, and adanal setae (37–45) setiform, smooth. Anterior edge of genital plate with two setae. Aggenital seta located posterolaterally to genital aperture. Adanal lyrifissure located close and parallel to the posterior part of anal plate. Adanal setae ad 1 and ad 2 posteriorly, ad 3 laterally to anal plate; distance ad 1 – ad 2 slightly shorter than ad 2 – ad 3. Postanal porose area (150–176 × 7–13) narrowly elongate oval. Legs. Generally, similar to P. (P.) cienfuegosensis sp. nov., but tibia IV without dorsal tooth, and solenidion on tibia IV inserted in anterior part of the segment. Remarks. Galumna (Galumna) gigantea sp. nov. is similar to G. (G.) paracapensis Ermilov, 2020 from Ethiopia (see in Ermilov & Rybalov 2020) in main morphological traits: body very large (more than 1000); rostrum rounded; bothridial seta setiform; dorsosejugal suture present; notogastral porose area Aa boomerang-like; postanal porose area elongate oval. However, the new species differs from the latter by the presence of well-developed (versus vestigial) interlamellar seta, slightly divergent distally (versus parallel) lamellar and sublamellar lines, three pairs (versus four pairs) of notogastral porose areas (A2 absent versus A2 present), the absence (versus presence) of median pore, the shape of notogastral porose area A1 (narrowly arch-like) and A3 (narrowly elongate oval) (versus A1 and A3 oval), the localization of lyrifissure im close to porose area A1 (versus equally distanced from Aa and A1). Records of Galumnidae from Cuba 1 Allogalumna brevisetosa (Bayartogtokh & Weigmann, 2005): 3 ex. Distribution: Mongolia, southeastern China. New record of the species in the Neotropical region. Allogalumna cubana Balogh & Mahunka, 1979: 9 ex. Distribution: Neotropical region. Pergalumna obvia (Berlese, 1914): 21 ex. Distribution: Semicosmopolitan. New record of the species in Cuba., Published as part of Ermilov, Sergey G., Kolesnikov, Vasiliy B., Kontschán, Jenő & Klimov, Pavel B., 2023, Taxonomic contribution to the knowledge of Galumnidae (Acari, Oribatida, Galumnidae) from Cuba, pp. 465-474 in Zootaxa 5258 (4) on pages 471-473, DOI: 10.11646/zootaxa.5258.4.7, http://zenodo.org/record/7784607, {"references":["Gashev, S. N., Elifanov, A. V. & Tolstikov, A. V. (2005) Zoological Museum of the Tyumen State University as the oldest center for studying biodiversity in the Tyumen District. Bulletin of the Tyumen State University, 3, 177 - 189.","Ermilov, S. G. & Rybalov, L. B. (2020) A new species of Galumna (Acari, Oribatida, Galumnidae) from Ethiopia. Acarina, 28 (1), 23 - 28. https: // doi. org / 10.21684 / 0132 - 8077 - 2020 - 28 - 1 - 23 - 28","Bayartogtokh, B. & Weigmann, G. (2005) Contribution to the knowledge of oribatid mites of the families Galumnidae and Parakalummidae (Acari, Oribatida) from Mongolia. Mitteilungen aus dem Museum fur Naturkunde in Berlin, Zoologische Reihe, 81 (1), 89 - 98. https: // doi. org / 10.1002 / mmnz. 200410002","Balogh, J. & Mahunka, S. (1979) New data to the knowledge of the oribatid fauna of the Neogaea (Acari). IV. Acta Zoologica Academiae Scientiarum Hungaricae, 25 (1 - 2), 35 - 60.","Berlese, A. (1914) Acari nuovi. Manipulus IX. Redia, 10 (1), 113 - 150."]}
- Published
- 2023
- Full Text
- View/download PDF
24. Come and See Mosfilm and Belarusfilm Klimov Elem Adamovich Ales
- Author
-
Liebman, Stuart
- Published
- 2020
25. Pergalumna (Pergalumna) foveolatostriata Ermilov & Kolesnikov & Kontschán & Klimov 2023, sp. nov
- Author
-
Ermilov, Sergey G., Kolesnikov, Vasiliy B., Kontschán, Jenő, and Klimov, Pavel B.
- Subjects
Pergalumna foveolatostriata ,Arthropoda ,Galumnidae ,Arachnida ,Animalia ,Biodiversity ,Sarcoptiformes ,Pergalumna ,Taxonomy - Abstract
Pergalumna (Pergalumna) foveolatostriata sp. nov. (Fig. 3) Type material. Holotype (male) and two paratypes (two males): Cuba, 221′N, 807′W, Cienfuegos Province, Sierra del Escambray, El Nicho, leaf litter in mixed forest (unknown date and collector; collection of the Tyumen State University Museum of Zoology, Tyumen, Russia; Gashev et al. 2005). The holotype is deposited in the collection of the Senckenberg Museum of Natural History, Görlitz, Germany; two paratypes are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia. All specimens are preserved in 70% solution of ethanol with a drop of glycerol. Etymology. The species name foveolatostriata refers to the presence of foveolae and striae on body surface. Diagnosis. Body length: 375–390. Body surface microgranulate; additionally, dorsal side, pteromorphs, anogenital region, partially epimeral region sparsely foveolate; foveolae on prodorsum, notogaster and in epimeral region smaller, partially connected by striae forming reticulate pattern. Rostrum rounded. Rostral and lamellar setae medium-sized, setiform, roughened; interlamellar seta short, needleform; bothridial seta long, setiform, barbed. Dorsosejugal porose area present. Dorsosejugal suture complete. Posterior part of notogaster slightly concave. Three pairs of porose areas developed: Aa oval, located between setal alveoli la and lm, slightly nearer to la; A1 and A3 rounded. Median pore present. Lyrifissure im located anterolaterally to A1 and removed from it. Epimeral and anogenital setae comparatively short, slightly roughened. Circumpedal carina bifurcate, medial carina directed to 3b, lateral carina directed to pedotectum II. Adanal lyrifissure located close and parallel to the middle of anal plate. Postanal porose area absent. Leg solenidion on tibia IV inserted in posterior part of the segment. Description of adult. Measurements. Body length: 390 (holotype), 375, 390 (paratypes); notogaster width: 315 (holotype), 300, 307 (paratypes). Integument (Figs 3A–D). Body color dark brown to black. Body surface densely microgranulate (visible under high magnification, 1000). Additionally, dorsal side, pteromorphs, anogenital region including anal plates, partially epimeral region sparsely foveolate; foveolae on prodorsum, notogaster and in epimeral region small (up to 2) partially connected by striae forming reticulate pattern; foveolae on pteromorphs and in anogenital region larger (up to 4) not connected striae but striae present on pteromorphs. Lateral sides of epimeres with some strong longitudinal striae. Antiaxial side of leg femora I–IV and trochanters III and IV partially striate and tuberculate. Prodorsum (Figs 3A, C). Rostrum rounded. Lamellar and sublamellar lines thin, parallel, curving backwards. Rostral and lamellar setae (30–34) setiform, roughened; le located close to L. Interlamellar seta (4) needleform. Bothridial seta (86–97) setiform, densely barbed. Dorsosejugal porose area oval (9–11 × 4–6), transversely oriented, located posterolaterally to insertion of in. Dorsophragma comparatively short, slightly elongate longitudinally. Notogaster (Figs 3A, C, D). Dorsosejugal suture complete. Posterior part of notogaster slightly concave. All notogastral setae represented by setal alveoli. Three pairs of porose areas developed, clearly bordered: Aa (13–15 7–11) oval, located between setal alveoli la and lm, slightly nearer to la; A1 (9–11) and A3 (9–11) rounded. Median pore present, located between A1. Opisthonotal gland opening and all lyrifissures distinct: gla located laterally to A1; im anterolaterally to A1 and removed from it; ip between p 1 and p 2, nearer to p 2; ih anteriorly to p 3; ips between p 2 and p 3. Gnathosoma. Generally, similar to P. (P.) cienfuegosensis sp. nov. Size of subcapitulum: 94–102 × 82–86; setae setiform: a (15–19) and m (9–11) roughened; h (6) smooth; a thickest, h thinnest; adoral seta (11–13) setiform, barbed. Length of chelicera: 123–131; cheliceral setae (cha: 41–43; chb: 28–30) setiform, barbed. Length of palp: 79–82; postpalpal seta (4) spiniform, smooth. Epimeral and lateral podosomal regions (Figs 3B, C). Anterior margin of ventral plate smooth. Epimeral setal formula: 1–0–2–3; setae (1a, 4a, 4b: 7–9; 3b, 3c, 4c: 13–15) setiform, slightly roughened. Circumpedal carina bifurcate, medial carina medium-sized, directed to 3b, lateral carina long, directed to pedotectum II. Anogenital region (Figs 3B–D). Genital (g 1: 11–13; others: 7–9), aggenital (7–9), anal (7–9), and adanal (7–9) setae setiform, slightly roughened. Anterior edge of genital plate with two setae, but the third pair slightly removed from edge. Aggenital seta located posterolaterally to genital aperture. Adanal lyrifissure located close and parallel to the middle of anal plate. Adanal setae ad 1 and ad 2 posteriorly, ad 3 laterally to anal plate; distance ad 1 – ad 2 slightly shorter than ad 2 – ad 3. Postanal porose area absent. Legs. Generally, similar to P. (P.) cienfuegosensis sp. nov., but tibia IV without dorsal tooth. Remarks. Pergalumna (Pergalumna) foveolatostriata sp. nov. is similar to P. (P.) lenticulata Ermilov & Friedrich, 2016 from Peru in main morphological traits: body with striae and foveolae; bothridial seta setiform; dorsosejugal suture present; three pairs of rounded notogastral porose areas; interlamellar seta minute. However, the new species differs from the latter by the smaller body size (length: 375–390 versus 929–1162), the ornamentation of body (prodorsum, notogaster and partially epimeral region with foveolae connected by short striae forming reticulate pattern; anogenital region foveolate versus prodorsum striate; foveolae and striae on notogaster not connected and not forming reticulate pattern; epimeral region partially tuberculate; anogenital region with foveolae and striae), rounded (versus with two lateral teeth) rostrum, long (versus medium-sized) bothridial seta, localization of notogastral porose area Aa (located slightly nearer to la than to lm versus located close to lm), slightly concave (versus broadly rounded) posterior part of notogaster, the presence (versus absence) of median pore, long circumpedal carina directed to pedotectum II (versus medium-sized, directed to 3b), the absence (versus presence) of lenticulus, and the localization of solenidion in posterior part of the leg tibia IV (versus in anterior part).
- Published
- 2023
- Full Text
- View/download PDF
26. Appointment of a Salaried Employment Judge of the Employment Tribunals (England and Wales): Klimov
- Subjects
Judges ,Business, international - Abstract
London: Courts and Tribunals Judiciary, UK Government has issued the following news release: The Lord Chancellor, The Right Honourable Alex Chalk KC MP, has appointed Pavel Klimov to be a [...]
- Published
- 2024
27. European Court of Human Rights judgment: CASE OF KLIMOV AND OTHERS v. RUSSIA
- Subjects
Human rights ,Judgments ,News, opinion and commentary ,European Court of Human Rights - Abstract
Brussels: European Court of Human Rights has issued the following judgment on (07 March 2024): FIRST SECTION CASE OF KLIMOV AND OTHERS v. RUSSIA (Applications nos. 37487/19 and 34 others) [...]
- Published
- 2024
28. Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
- Author
-
Cochran, Tyler A., Jobst, Bernhard, Rosenberg, Eliott, Lensky, Yuri D., Gyawali, Gaurav, Eassa, Norhan, Will, Melissa, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Bovaird, Jenna, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Higgott, Oscar, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobris, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Gammon-Smith, Adam, Pollmann, Frank, Knap, Michael, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.
- Published
- 2024
29. Quantum error correction below the surface code threshold
- Author
-
Acharya, Rajeev, Aghababaie-Beni, Laleh, Aleiner, Igor, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Bacon, Dave, Ballard, Brian, Bardin, Joseph C., Bausch, Johannes, Bengtsson, Andreas, Bilmes, Alexander, Blackwell, Sam, Boixo, Sergio, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Yu, Chen, Zijun, Chiaro, Ben, Chik, Desmond, Chou, Charina, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Davies, Alex, De Lorenzo, Laura, Debroy, Dripto M., Demura, Sean, Devoret, Michel, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Edlich, Thomas, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Farhi, Edward, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hall, John, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heras, Francisco J. H., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hill, Gordon, Hilton, Jeremy, Holland, George, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Kelly, Julian, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Kohli, Pushmeet, Korotkov, Alexander N., Kostritsa, Fedor, Kothari, Robin, Kozlovskii, Borislav, Kreikebaum, John Mark, Kurilovich, Vladislav D., Lacroix, Nathan, Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Kenny, Lensky, Yuri D., Leon, Shannon, Lester, Brian J., Li, Wing Yan, Li, Yin, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Malone, Fionn D., Maloney, Ashley, Mandrá, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Nersisyan, Ani, Neven, Hartmut, Newman, Michael, Ng, Jiun How, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, O'Brien, Thomas E., Oliver, William D., Opremcak, Alex, Ottosson, Kristoffer, Petukhov, Andre, Pizzuto, Alex, Platt, John, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Roushan, Pedram, Rubin, Nicholas C., Saei, Negar, Sank, Daniel, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Senior, Andrew W., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Singh, Shraddha, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smelyanskiy, Vadim, Smith, W. Clarke, Somma, Rolando D., Springer, Sofia, Sterling, George, Strain, Doug, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, Weber, Kate, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, and Zobrist, Nicholas
- Subjects
Quantum Physics - Abstract
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of $\Lambda$ = 2.14 $\pm$ 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% $\pm$ 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit's lifetime by a factor of 2.4 $\pm$ 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 $\mu$s at distance-5 up to a million cycles, with a cycle time of 1.1 $\mu$s. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 $\times$ 10$^9$ cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms., Comment: 10 pages, 4 figures, Supplementary Information
- Published
- 2024
30. Latent optical nonclassicality of conditionally-prepared states
- Author
-
Kovtoniuk, V. S., Klimov, A. B., and Semenov, A. A.
- Subjects
Quantum Physics - Abstract
The lack of information obtained from informationally-incomplete quantum measurements can prevent the detection of quantum resources, such as optical nonclassicality. We develop a technique that overcomes this limitation for single-mode quantum states conditionally prepared through measurements on another mode of a two-mode state. This task is performed by testing nonclassical steering -- a class of quantum correlations beyond quantum entanglement and quantum discord, for which we introduce a rigorous description., Comment: 12 pages, 3 figures
- Published
- 2024
31. Theoretical cryptanalysis of the Klimov-Shamir number generator TF-1
- Author
-
Tsaban, Boaz
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Computational Complexity - Abstract
The internal state of the Klimov-Shamir number generator TF-1 consists of four words of size w bits each, whereas its intended strength is 2^{2w}. We exploit an asymmetry in its output function to show that the internal state can be recovered after having 2^w outputs, using 2^{1.5w} operations. For w=32 the attack is practical, but for their recommended w=64 it is only of theoretical interest., Comment: To appear in JoC
- Published
- 2005
- Full Text
- View/download PDF
32. Thermalization and criticality on an analogue–digital quantum simulator
- Author
-
Andersen, T. I., Astrakhantsev, N., Karamlou, A. H., Berndtsson, J., Motruk, J., Szasz, A., Gross, J. A., Schuckert, A., Westerhout, T., Zhang, Y., Forati, E., Rossi, D., Kobrin, B., Paolo, A. Di, Klots, A. R., Drozdov, I., Kurilovich, V., Petukhov, A., Ioffe, L. B., Elben, A., Rath, A., Vitale, V., Vermersch, B., Acharya, R., Beni, L. A., Anderson, K., Ansmann, M., Arute, F., Arya, K., Asfaw, A., Atalaya, J., Ballard, B., Bardin, J. C., Bengtsson, A., Bilmes, A., Bortoli, G., Bourassa, A., Bovaird, J., Brill, L., Broughton, M., Browne, D. A., Buchea, B., Buckley, B. B., Buell, D. A., Burger, T., Burkett, B., Bushnell, N., Cabrera, A., Campero, J., Chang, H.-S., Chen, Z., Chiaro, B., Claes, J., Cleland, A. Y., Cogan, J., Collins, R., Conner, P., Courtney, W., Crook, A. L., Das, S., Debroy, D. M., Lorenzo, L. De, Barba, A. Del Toro, Demura, S., Donohoe, P., Dunsworth, A., Earle, C., Eickbusch, A., Elbag, A. M., Elzouka, M., Erickson, C., Faoro, L., Fatemi, R., Ferreira, V. S., Burgos, L. Flores, Fowler, A. G., Foxen, B., Ganjam, S., Gasca, R., Giang, W., Gidney, C., Gilboa, D., Giustina, M., Gosula, R., Dau, A. Grajales, Graumann, D., Greene, A., Habegger, S., Hamilton, M. C., Hansen, M., Harrigan, M. P., Harrington, S. D., Heslin, S., Heu, P., Hill, G., Hoffmann, M. R., Huang, H.-Y., Huang, T., Huff, A., Huggins, W. J., Isakov, S. V., Jeffrey, E., Jiang, Z., Jones, C., Jordan, S., Joshi, C., Juhas, P., Kafri, D., Kang, H., Kechedzhi, K., Khaire, T., Khattar, T., Khezri, M., Kieferová, M., Kim, S., Kitaev, A., Klimov, P., Korotkov, A. N., Kostritsa, F., Kreikebaum, J. M., Landhuis, D., Langley, B. W., Laptev, P., Lau, K.-M., Guevel, L. Le, Ledford, J., Lee, J., Lee, K. W., Lensky, Y. D., Lester, B. J., Li, W. Y., Lill, A. T., Liu, W., Livingston, W. P., Locharla, A., Lundahl, D., Lunt, A., Madhuk, S., Maloney, A., Mandrà, S., Martin, L. S., Martin, O., Martin, S., Maxfield, C., McClean, J. R., McEwen, M., Meeks, S., Miao, K. C., Mieszala, A., Molina, S., Montazeri, S., Morvan, A., Movassagh, R., Neill, C., Nersisyan, A., Newman, M., Nguyen, A., Nguyen, M., Ni, C.-H., Niu, M. Y., Oliver, W. D., Ottosson, K., Pizzuto, A., Potter, R., Pritchard, O., Pryadko, L. P., Quintana, C., Reagor, M. J., Rhodes, D. M., Roberts, G., Rocque, C., Rosenberg, E., Rubin, N. C., Saei, N., Sankaragomathi, K., Satzinger, K. J., Schurkus, H. F., Schuster, C., Shearn, M. J., Shorter, A., Shutty, N., Shvarts, V., Sivak, V., Skruzny, J., Small, S., Smith, W. Clarke, Springer, S., Sterling, G., Suchard, J., Szalay, M., Sztein, A., Thor, D., Torres, A., Torunbalci, M. M., Vaishnav, A., Vdovichev, S., Villalonga, B., Heidweiller, C. Vollgraff, Waltman, S., Wang, S. X., White, T., Wong, K., Woo, B. W. K., Xing, C., Yao, Z. Jamie, Yeh, P., Ying, B., Yoo, J., Yosri, N., Young, G., Zalcman, A., Zhu, N., Zobrist, N., Neven, H., Babbush, R., Boixo, S., Hilton, J., Lucero, E., Megrant, A., Kelly, J., Chen, Y., Smelyanskiy, V., Vidal, G., Roushan, P., Läuchli, A. M., Abanin, D. A., and Mi, X.
- Published
- 2025
- Full Text
- View/download PDF
33. Colloidal quantum dots enable tunable liquid-state lasers
- Author
-
Hahm, Donghyo, Pinchetti, Valerio, Livache, Clément, Ahn, Namyoung, Noh, Jungchul, Li, Xueyang, Du, Jun, Wu, Kaifeng, and Klimov, Victor I.
- Published
- 2025
- Full Text
- View/download PDF
34. Comment on 'A Criterion that determines foldability of proteins' by D. Klimov and D. Thirumalai (PRL,v.76, p.4070 (1996))
- Author
-
Karplus, M. and Shakhnovich, E.
- Subjects
Condensed Matter ,Quantitative Biology - Abstract
We argue that that the folding criterion suggested by Klimov and Thirumalai is similar to the one published earlier and that their conclusion of invalidity of the ``gap criterion'' is due to misunderstanding of previous work, Comment: 3 pages (doublespace)
- Published
- 1996
35. The EUSO-SPB2 Fluorescence Telescope for the Detection of Ultra-High Energy Cosmic Rays
- Author
-
Adams Jr., James H., Allard, Denis, Alldredge, Phillip, Anchordoqui, Luis, Anzalone, Anna, Battisti, Matteo, Belov, Alexander A., Bertaina, Mario, Bertone, Peter F., Blin-Bondil, Sylvie, Burton, Julia, Cafagna, Francesco S., Casolino, Marco, Černý, Karel, Christ, Mark J., Colalillo, Roberta, Crawford, Hank J., Creusot, Alexandre, Cummings, Austin, Diesing, Rebecca, Di Nola, Alessandro, Ebisuzaki, Toshikazu, Eser, Johannes, Ferrarese, Silvia, Filippatos, George, Finch, William W., Flaminio, Flavia, Fornaro, Claudio, Fuehne, Duncan, Fuglesang, Christer, Garg, Diksha, Golzio, Alessio, Guarino, Fausto, Guépin, Claire, Heibges, Tobias, Judd, Eleanor G., Klimov, Pavel A., Krizmanic, John F., Kungel, Viktoria, Kupari, Luke, Kuznetsov, Evgeny, Manfrin, Massimiliano, Marszal, Wlodzimierz, Matthews, John N., Mese, Marco, Meyer, Stephan S., Mignone, Marco, Miyamoto, Hiroko, Murashov, Alexey S., Nachtman, Jane M., Olinto, Angela V., Onel, Yasar, Osteria, Giuseppe, Panico, Beatrice, Parizot, Ètienne, Paul, Tom, Pech, Miroslav, Perfetto, Francesco, Piotrowski, Lech W., Plebaniak, Zbigniew, Posligua, Jonatan, Prévôt, Guillaume, Przybylak, Marika, Reardon, Patrick, Reno, Mary Hall, Ricci, Marco, Sarazin, Fred, Schovánek, P., Scotti, Valentina, Shinozaki, Kenji, Soriano, Jorge F., Stillwell, Ben K., Szabelski, Jacek, Takizawa, Yoshiyuki, Trofimov, Daniil, Unel, Fredrik, Valore, Laura, Venters, Tonia M., Watts Jr., John, Wiencke, Lawrence, Wistrand, Hannah, and Young, Roy
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) flew on May 13$^{\text{th}}$ and 14$^{\text{th}}$ of 2023. Consisting of two novel optical telescopes, the payload utilized next-generation instrumentation for the observations of extensive air showers from near space. One instrument, the fluorescence telescope (FT) searched for Ultra-High Energy Cosmic Rays (UHECRs) by recording the atmosphere below the balloon in the near-UV with a 1~$\mu$s time resolution using 108 multi-anode photomultiplier tubes with a total of 6,912 channels. Validated by pre-flight measurements during a field campaign, the energy threshold was estimated around 2~EeV with an expected event rate of approximately 1 event per 10 hours of observation. Based on the limited time afloat, the expected number of UHECR observations throughout the flight is between 0 and 2. Consistent with this expectation, no UHECR candidate events have been found. The majority of events appear to be detector artifacts that were not rejected properly due to a shortened commissioning phase. Despite the earlier-than-expected termination of the flight, data were recorded which provide insights into the detectors stability in the near-space environment as well as the diffuse ultraviolet emissivity of the atmosphere, both of which are impactful to future experiments.
- Published
- 2024
- Full Text
- View/download PDF
36. Optimization of decoder priors for accurate quantum error correction
- Author
-
Sivak, Volodymyr, Newman, Michael, and Klimov, Paul
- Subjects
Quantum Physics - Abstract
Accurate decoding of quantum error-correcting codes is a crucial ingredient in protecting quantum information from decoherence. It requires characterizing the error channels corrupting the logical quantum state and providing this information as a prior to the decoder. We introduce a reinforcement learning inspired method for calibrating these priors that aims to minimize the logical error rate. Our method significantly improves the decoding accuracy in repetition and surface code memory experiments executed on Google's Sycamore processor, outperforming the leading decoder-agnostic method by 16% and 3.3% respectively. This calibration approach will serve as an important tool for maximizing the performance of both near-term and future error-corrected quantum devices.
- Published
- 2024
37. Thermalization and Criticality on an Analog-Digital Quantum Simulator
- Author
-
Andersen, Trond I., Astrakhantsev, Nikita, Karamlou, Amir H., Berndtsson, Julia, Motruk, Johannes, Szasz, Aaron, Gross, Jonathan A., Schuckert, Alexander, Westerhout, Tom, Zhang, Yaxing, Forati, Ebrahim, Rossi, Dario, Kobrin, Bryce, Di Paolo, Agustin, Klots, Andrey R., Drozdov, Ilya, Kurilovich, Vladislav D., Petukhov, Andre, Ioffe, Lev B., Elben, Andreas, Rath, Aniket, Vitale, Vittorio, Vermersch, Benoit, Acharya, Rajeev, Beni, Laleh Aghababaie, Anderson, Kyle, Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Donohoe, Paul, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Giustina, Marissa, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hoffmann, Markus R., Huang, Hsin-Yuan, Huang, Trent, Huff, Ashley, Huggins, William J., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Landhuis, David, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lensky, Yuri D., Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Martin, Steven, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rosenberg, Eliott, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Sztein, Alex, Thor, Douglas, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Babbush, Ryan, Boixo, Sergio, Hilton, Jeremy, Lucero, Erik, Megrant, Anthony, Kelly, Julian, Chen, Yu, Smelyanskiy, Vadim, Vidal, Guifre, Roushan, Pedram, Lauchli, Andreas M., Abanin, Dmitry A., and Mi, Xiao
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Strongly Correlated Electrons - Abstract
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
- Published
- 2024
38. Geometric Phase in a Generalized Time-Dependent Karassiov-Klimov Model
- Author
-
Wang, An-Ling, Liu, Fu-Ping, Yu, Zhao-Xian, and Jiao, Zhi-Yong
- Published
- 2009
- Full Text
- View/download PDF
39. On the algebraic structure of Klimov-Shamir T-function
- Author
-
LUO Yong-long and QI Wen-feng
- Subjects
stream cipher ,algebraic structure ,T-function ,Klimov-Shamir T-function ,Telecommunication ,TK5101-6720 - Abstract
The algebraic structure of Klimov-Shamir T-function was studied,and some algebraic equations over the bina-ries of sequences generated by this T-function were presented.According to these equations,how to choose C which could make the algebraic structure of this T-function more complicated was preliminarily discussed.
- Published
- 2008
40. Composition and Performance of Modern Antistatic Additives for Diesel and Jet Fuels
- Author
-
Aleksanyan, D. R., Savelenko, V. D., Burov, N. O., Ershov, M. A., Gorbatyuk, E. D., Makhova, U. A., Klimov, N. A., Donskaya, E. S., Nizovtsev, A. V., Tikhomirova, E. O., Mukhina, D. Yu., Shevtsov, A. A., and Lyadov, A. S.
- Published
- 2024
- Full Text
- View/download PDF
41. Modern Approaches to Investigating the Effectiveness of Probiotics in Aquaculture
- Author
-
Kochetkov, N. I., Nikiforov-Nikishin, D. L., Klimuk, A. A., Smorodinskaya, S. V., Nikiforov-Nikishin, A. L., Marsova, M. V., Vatlin, A. A., and Klimov, V. A.
- Published
- 2024
- Full Text
- View/download PDF
42. Effect of Electron Beam Treatment of Composite ATZ and TZP Ceramics on Surface Topography and Reaction of Osteoblast-Like Cells
- Author
-
Petrov, A. E., Bakeev, I. Yu., Zenin, A. A., and Klimov, A. S.
- Published
- 2024
- Full Text
- View/download PDF
43. MORS: BLDC-Based Small Quadruped Robot
- Author
-
Budanov, V. M., Danilov, V. A., Kapytov, D. V., and Klimov, K. V.
- Published
- 2024
- Full Text
- View/download PDF
44. Experimental Demonstration of the Coexistence of Phase-Time Coding QKD with Intense C-Band Signals
- Author
-
Borisova, A. V., Stepanov, K. V., Klimov, A. N., and Timoshenko, A. S.
- Published
- 2024
- Full Text
- View/download PDF
45. Effect of Tungsten Shielding with Bismuth under the Influence of Powerful Flow of Hydrogen Plasma
- Author
-
Toporkov, D. A., Burmistrov, D. A., Barsuk, V. A., Gavrilov, V. V., Karelov, S.V., Klimov, N. S., Lidzhigoriaev, S. D., and Pushina, A. V.
- Published
- 2024
- Full Text
- View/download PDF
46. Testing of the B4C Protective Coating Under Irradiation with Intense Plasma Flows at the QSPA-T Facility
- Author
-
Buzhinskij, O. I., Barsuk, V. A., Begrambekov, L. B., Klimov, N. S., Otroshchenko, V. G., and Putric, A. B.
- Published
- 2024
- Full Text
- View/download PDF
47. Experimental Study of Corrosion Resistance of Nickel-Molybdenum Alloys in the Melt of Lithium and Beryllium Fluoride Salts
- Author
-
Surenkov, A. I., Abalin, S. S., Ivliev, P. N., Ignatiev, V. V., Klimov, K. S., Subbotin, A. S., Trunkin, I. N., and Uglov, V. S.
- Published
- 2024
- Full Text
- View/download PDF
48. Container Materials for Molten Salt Nuclear Reactors: Problems and Research
- Author
-
Abalin, A. S., Abalin, S. S., Ivliev, P. N., Ignatyev, V. V., Klimov, K. S., Subbotin, A. S., Surenkov, A. I., Trunkin, I. N., and Uglov, V. S.
- Published
- 2024
- Full Text
- View/download PDF
49. Impact of the Composition of a Multifunctional Additive Package for Diesel Fuel on Engine Power
- Author
-
Savelenko, V. D., Ershov, M. A., Klimov, N. A., Aleksanyan, D. R., Shevtsov, A A., Makhova, U. A., Lazarev, V. E., Manekina, A. V., Mukhina, D. Yu., Burov, N. O., Tikhomirova, E. O., Lyadov, A. S., Kochubeev, A. A., Borisanov, D. V., and Ivanov, P. S.
- Published
- 2024
- Full Text
- View/download PDF
50. Phase transitions in random circuit sampling
- Author
-
Morvan, A., Villalonga, B., Mi, X., Mandrà, S., Bengtsson, A., Klimov, P. V., Chen, Z., Hong, S., Erickson, C., Drozdov, I. K., Chau, J., Laun, G., Movassagh, R., Asfaw, A., Brandão, L. T. A. N., Peralta, R., Abanin, D., Acharya, R., Allen, R., Andersen, T. I., Anderson, K., Ansmann, M., Arute, F., Arya, K., Atalaya, J., Bardin, J. C., Bilmes, A., Bortoli, G., Bourassa, A., Bovaird, J., Brill, L., Broughton, M., Buckley, B. B., Buell, D. A., Burger, T., Burkett, B., Bushnell, N., Campero, J., Chang, H.-S., Chiaro, B., Chik, D., Chou, C., Cogan, J., Collins, R., Conner, P., Courtney, W., Crook, A. L., Curtin, B., Debroy, D. M., Barba, A. Del Toro, Demura, S., Paolo, A. Di, Dunsworth, A., Faoro, L., Farhi, E., Fatemi, R., Ferreira, V. S., Burgos, L. Flores, Forati, E., Fowler, A. G., Foxen, B., Garcia, G., Genois, É., Giang, W., Gidney, C., Gilboa, D., Giustina, M., Gosula, R., Dau, A. Grajales, Gross, J. A., Habegger, S., Hamilton, M. C., Hansen, M., Harrigan, M. P., Harrington, S. D., Heu, P., Hoffmann, M. R., Huang, T., Huff, A., Huggins, W. J., Ioffe, L. B., Isakov, S. V., Iveland, J., Jeffrey, E., Jiang, Z., Jones, C., Juhas, P., Kafri, D., Khattar, T., Khezri, M., Kieferová, M., Kim, S., Kitaev, A., Klots, A. R., Korotkov, A. N., Kostritsa, F., Kreikebaum, J. M., Landhuis, D., Laptev, P., Lau, K.-M., Laws, L., Lee, J., Lee, K. W., Lensky, Y. D., Lester, B. J., Lill, A. T., Liu, W., Livingston, W. P., Locharla, A., Malone, F. D., Martin, O., Martin, S., McClean, J. R., McEwen, M., Miao, K. C., Mieszala, A., Montazeri, S., Mruczkiewicz, W., Naaman, O., Neeley, M., Neill, C., Nersisyan, A., Newman, M., Ng, J. H., Nguyen, A., Nguyen, M., Niu, M. Yuezhen, O’Brien, T. E., Omonije, S., Opremcak, A., Petukhov, A., Potter, R., Pryadko, L. P., Quintana, C., Rhodes, D. M., Rocque, C., Rosenberg, E., Rubin, N. C., Saei, N., Sank, D., Sankaragomathi, K., Satzinger, K. J., Schurkus, H. F., Schuster, C., Shearn, M. J., Shorter, A., Shutty, N., Shvarts, V., Sivak, V., Skruzny, J., Smith, W. C., Somma, R. D., Sterling, G., Strain, D., Szalay, M., Thor, D., Torres, A., Vidal, G., Heidweiller, C. Vollgraff, White, T., Woo, B. W. K., Xing, C., Yao, Z. J., Yeh, P., Yoo, J., Young, G., Zalcman, A., Zhang, Y., Zhu, N., Zobrist, N., Rieffel, E. G., Biswas, R., Babbush, R., Bacon, D., Hilton, J., Lucero, E., Neven, H., Megrant, A., Kelly, J., Roushan, P., Aleiner, I., Smelyanskiy, V., Kechedzhi, K., Chen, Y., and Boixo, S.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.