1. Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser
- Author
-
Ottomaniello, Andrea, Keeley, James, Rubino, Pierluigi, Li, Lianhe, Cecchini, Marco, Linfield, Edmund H., Davies, A. Giles, Dean, Paul, Pitanti, Alessandro, and Tredicucci, Alessandro
- Subjects
Physics - Optics - Abstract
The effectiveness of self-mixing interferometry has been demonstrated across the electromagnetic spectrum, from visible to microwave frequencies, in a plethora of sensing applications, ranging from distance measurement to material analysis, microscopy and coherent imaging. Owing to their intrinsic stability to optical feedback, quantum cascade lasers (QCLs) represent a source that offers unique and versatile characteristics to further improve the self-mixing functionality at mid infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision deeply subwalength (< {\lambda}/6000) mechanical vibrations of a suspended Si3N4-membrane used as the external element of a THz QCL feedback interferometric apparatus. Besides representing a platform for the characterization of small displacements, our self-mixing configuration can be exploited for the realization of optomechanical systems, where several laser sources can be linked together through a common mechanical microresonator actuated by radiation pressure., Comment: 5 pages, 4 figures more...
- Published
- 2019
- Full Text
- View/download PDF