1. Ultrafast Dynamics of Strongly Correlated Fermions -- Nonequilibrium Green Functions and Selfenergy Approximations
- Author
-
Schluenzen, N., Hermanns, S., Scharnke, M., and Bonitz, M.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
This article presents an overview on recent progress in the theory of nonequilibrium Green functions (NEGF). NEGF, presently, are the only \textit{ab-initio} quantum approach that is able to study the dynamics of correlations for long times in two and three dimensions. However, until recently, NEGF simulations have mostly been performed with rather simple selfenergy approximations such as the second-order Born approximation (SOA). While they correctly capture the qualitative trends of the relaxation towards equilibrium, the reliability and accuracy of these NEGF simulations has remained open, for a long time. Here we report on recent tests of NEGF simulations for finite lattice systems against exact-diagonalization and density-matrix-renormalization-group benchmark data. The results confirm the high accuracy and predictive capability of NEGF simulations---provided selfenergies are used that go beyond the SOA and adequately include strong correlation and dynamical-screening effects. We present a selfcontained introduction to the theory of NEGF and give an overview on recent numerical applications to compute the ultrafast relaxation dynamics of correlated fermions. In the second part we give a detailed introduction to selfenergies beyond the SOA. Important examples are the third-order approximation, the \GWAx, the \TMA and the fluctuating-exchange approximation. We give a comprehensive summary of the explicit selfenergy expressions for a variety of systems of practical relevance, starting from the most general expressions and the Feynman diagrams, and including also the important cases of diagonal basis sets, the Hubbard model and the differences occuring for bosons and fermions. With these details, and information on the computational effort and scaling with the basis size and propagation duration, an easy use of these approximations in numerical applications is made possible.
- Published
- 2019
- Full Text
- View/download PDF