1. Modelling co-evolution of resource feedback and social network dynamics in human-environmental systems
- Author
-
Saeedian, Meghdad, Tu, Chengyi, Menegazzo, Fabio, D'Odorico, Paolo, Azaele, Sandro, and Suweis, Samir
- Subjects
Physics - Physics and Society ,Computer Science - Information Theory ,Nonlinear Sciences - Adaptation and Self-Organizing Systems ,Statistics - Applications - Abstract
Games with environmental feedback have become a crucial area of study across various scientific domains, modelling the dynamic interplay between human decisions and environmental changes, and highlighting the consequences of our choices on natural resources and biodiversity. In this work, we propose a co-evolutionary model for human-environment systems that incorporates the effects of knowledge feedback and social interaction on the sustainability of common pool resources. The model represents consumers as agents who adjust their resource extraction based on the resource's state. These agents are connected through social networks, where links symbolize either affinity or aversion among them. The interplay between social dynamics and resource dynamics is explored, with the system's evolution analyzed across various network topologies and initial conditions. We find that knowledge feedback can independently sustain common pool resources. However, the impact of social interactions on sustainability is dual-faceted: it can either support or impede sustainability, influenced by the network's connectivity and heterogeneity. A notable finding is the identification of a critical network mean degree, beyond which a depletion/repletion transition parallels an absorbing/active state transition in social dynamics, i.e., individual agents and their connections are/are not prone to being frozen in their social states. Furthermore, the study examines the evolution of the social network, revealing the emergence of two polarized groups where agents within each community have the same affinity. Comparative analyses using Monte-Carlo simulations and rate equations are employed, along with analytical arguments, to reinforce the study's findings. The model successfully captures how information spread and social dynamics may impact the sustanebility of common pool resource.
- Published
- 2024