446 results on '"Drilleau M"'
Search Results
2. Surface waves and crustal structure on Mars
- Author
-
Kim, D, Banerdt, WB, Ceylan, S, Giardini, D, Lekić, V, Lognonné, P, Beghein, C, Beucler, É, Carrasco, S, Charalambous, C, Clinton, J, Drilleau, M, Durán, C, Golombek, M, Joshi, R, Khan, A, Knapmeyer-Endrun, B, Li, J, Maguire, R, Pike, WT, Samuel, H, Schimmel, M, Schmerr, NC, Stähler, SC, Stutzmann, E, Wieczorek, M, Xu, Z, Batov, A, Bozdag, E, Dahmen, N, Davis, P, Gudkova, T, Horleston, A, Huang, Q, Kawamura, T, King, SD, McLennan, SM, Nimmo, F, Plasman, M, Plesa, AC, Stepanova, IE, Weidner, E, Zenhäusern, G, Daubar, IJ, Fernando, B, Garcia, RF, Posiolova, LV, and Panning, MP
- Subjects
General Science & Technology - Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
3. Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms
- Author
-
Xu, Haotian, Beghein, C, Panning, MP, Drilleau, M, Lognonné, P, van Driel, M, Ceylan, S, Böse, M, Brinkman, N, Clinton, J, Euchner, F, Giardini, D, Horleston, A, Kawamura, T, Kenda, B, Murdoch, N, and Stähler, S
- Published
- 2021
4. SEIS: Insight’s Seismic Experiment for Internal Structure of Mars
- Author
-
Lognonné, P, Banerdt, WB, Giardini, D, Pike, WT, Christensen, U, Laudet, P, de Raucourt, S, Zweifel, P, Calcutt, S, Bierwirth, M, Hurst, KJ, Ijpelaan, F, Umland, JW, Llorca-Cejudo, R, Larson, SA, Garcia, RF, Kedar, S, Knapmeyer-Endrun, B, Mimoun, D, Mocquet, A, Panning, MP, Weber, RC, Sylvestre-Baron, A, Pont, G, Verdier, N, Kerjean, L, Facto, LJ, Gharakanian, V, Feldman, JE, Hoffman, TL, Klein, DB, Klein, K, Onufer, NP, Paredes-Garcia, J, Petkov, MP, Willis, JR, Smrekar, SE, Drilleau, M, Gabsi, T, Nebut, T, Robert, O, Tillier, S, Moreau, C, Parise, M, Aveni, G, Ben Charef, S, Bennour, Y, Camus, T, Dandonneau, PA, Desfoux, C, Lecomte, B, Pot, O, Revuz, P, Mance, D, tenPierick, J, Bowles, NE, Charalambous, C, Delahunty, AK, Hurley, J, Irshad, R, Liu, Huafeng, Mukherjee, AG, Standley, IM, Stott, AE, Temple, J, Warren, T, Eberhardt, M, Kramer, A, Kühne, W, Miettinen, E-P, Monecke, M, Aicardi, C, André, M, Baroukh, J, Borrien, A, Bouisset, A, Boutte, P, Brethomé, K, Brysbaert, C, Carlier, T, Deleuze, M, Desmarres, JM, Dilhan, D, Doucet, C, Faye, D, Faye-Refalo, N, Gonzalez, R, Imbert, C, Larigauderie, C, Locatelli, E, Luno, L, Meyer, J-R, Mialhe, F, Mouret, JM, Nonon, M, Pahn, Y, Paillet, A, Pasquier, P, Perez, G, and Perez, R
- Subjects
Behavioral and Social Science ,Basic Behavioral and Social Science ,Mars seismology ,InSight ,Astronomical and Space Sciences ,Astronomy & Astrophysics - Abstract
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼2500 at 1 Hz and ∼200000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw∼3 at 40∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users.
- Published
- 2019
5. Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars
- Author
-
Jacob, A., Plasman, M., Perrin, C., Fuji, N., Lognonné, P., Xu, Z., Drilleau, M., Brinkman, N., Stähler, S., Sainton, G., Lucas, A., Giardini, D., Kawamura, T., Clinton, J., and Banerdt, W.B.
- Published
- 2022
- Full Text
- View/download PDF
6. Geophysical evidence for an enriched molten silicate layer above Mars's core.
- Author
-
Samuel H, Drilleau M, Rivoldini A, Xu Z, Huang Q, Garcia RF, Lekić V, Irving JCE, Badro J, Lognonné PH, Connolly JAD, Kawamura T, Gudkova T, and Banerdt WB
- Abstract
The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref.
1 ), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core-mantle boundary2 . An alternative hypothesis is that Mars's mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3 . Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars's dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm-3 , 5-8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars's crust., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
7. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data
- Author
-
Lognonné, P., Banerdt, W. B., Pike, W. T., Giardini, D., Christensen, U., Garcia, R. F., Kawamura, T., Kedar, S., Knapmeyer-Endrun, B., Margerin, L., Nimmo, F., Panning, M., Tauzin, B., Scholz, J.-R., Antonangeli, D., Barkaoui, S., Beucler, E., Bissig, F., Brinkman, N., Calvet, M., Ceylan, S., Charalambous, C., Davis, P., van Driel, M., Drilleau, M., Fayon, L., Joshi, R., Kenda, B., Khan, A., Knapmeyer, M., Lekic, V., McClean, J., Mimoun, D., Murdoch, N., Pan, L., Perrin, C., Pinot, B., Pou, L., Menina, S., Rodriguez, S., Schmelzbach, C., Schmerr, N., Sollberger, D., Spiga, A., Stähler, S., Stott, A., Stutzmann, E., Tharimena, S., Widmer-Schnidrig, R., Andersson, F., Ansan, V., Beghein, C., Böse, M., Bozdag, E., Clinton, J., Daubar, I., Delage, P., Fuji, N., Golombek, M., Grott, M., Horleston, A., Hurst, K., Irving, J., Jacob, A., Knollenberg, J., Krasner, S., Krause, C., Lorenz, R., Michaut, C., Myhill, R., Nissen-Meyer, T., ten Pierick, J., Plesa, A.-C., Quantin-Nataf, C., Robertsson, J., Rochas, L., Schimmel, M., Smrekar, S., Spohn, T., Teanby, N., Tromp, J., Vallade, J., Verdier, N., Vrettos, C., Weber, R., Banfield, D., Barrett, E., Bierwirth, M., Calcutt, S., Compaire, N., Johnson, C.L., Mance, D., Euchner, F., Kerjean, L., Mainsant, G., Mocquet, A., Rodriguez Manfredi, J. A, Pont, G., Laudet, P., Nebut, T., de Raucourt, S., Robert, O., Russell, C. T., Sylvestre-Baron, A., Tillier, S., Warren, T., Wieczorek, M., Yana, C., and Zweifel, P.
- Published
- 2020
- Full Text
- View/download PDF
8. The seismicity of Mars
- Author
-
Giardini, D., Lognonné, P., Banerdt, W. B., Pike, W. T., Christensen, U., Ceylan, S., Clinton, J. F., van Driel, M., Stähler, S. C., Böse, M., Garcia, R. F., Khan, A., Panning, M., Perrin, C., Banfield, D., Beucler, E., Charalambous, C., Euchner, F., Horleston, A., Jacob, A., Kawamura, T., Kedar, S., Mainsant, G., Scholz, J.-R., Smrekar, S. E., Spiga, A., Agard, C., Antonangeli, D., Barkaoui, S., Barrett, E., Combes, P., Conejero, V., Daubar, I., Drilleau, M., Ferrier, C., Gabsi, T., Gudkova, T., Hurst, K., Karakostas, F., King, S., Knapmeyer, M., Knapmeyer-Endrun, B., Llorca-Cejudo, R., Lucas, A., Luno, L., Margerin, L., McClean, J. B., Mimoun, D., Murdoch, N., Nimmo, F., Nonon, M., Pardo, C., Rivoldini, A., Manfredi, J. A. Rodriguez, Samuel, H., Schimmel, M., Stott, A. E., Stutzmann, E., Teanby, N., Warren, T., Weber, R. C., Wieczorek, M., and Yana, C.
- Published
- 2020
- Full Text
- View/download PDF
9. Planetary Seismology: Nearly 3 years on Mars, and a return to the Moon
- Author
-
Yana, Charles, Weber, Renee, Walsh, William, Standley, Ian, de Raucourt, Sebastien, Pont, Gabriel, Pike, W. Tom, Nunn, Ceri, Lognonné, Philippe, Kawamura, Taichi, Garcia, Raphael, Elliott, John, Cutler, James, Calcutt, Simon, Bugby, David, Bowles, Neil, Kedar, Sharon, Tharimena, S, Tauzin, B, Stutzmann, E, Schimmel, M, Schmelzbach, C, Nunn, C, Murdoch, N, Lekic, V, Brinkman, N, Kenda, B, Fayon, L, Spiga, A, Stott, A. E, Stähler, S, Orhand-Mainsant, G, Knapmeyer, M, Khan, A, Horleston, A, van Driel, M, Charalambous, C, Ceylan, S, Böse, M, Drilleau, M, Hurst, K, Weber, R, Teanby, N, Schmerr, N, Mimoun, D, Margerin, L, Knapmeyer-Endrun, B, Kedar, S, Kawamura, T, Irving, J, Garcia, R, Clinton, J, Bozdag, E, Lorenz, R, Giardini, D, Pike, W.T, Lognonné, P, Banerdt, W.B, and Panning, Mark
- Published
- 2021
10. Planetary Seismology: Nearly 3 years on Mars, and a return to the Moon
- Author
-
Panning, Mark, Banerdt, W.B, Lognonné, P, Pike, W.T, Giardini, D, Lorenz, R, Bozdag, E, Clinton, J, Garcia, R, Irving, J, Kawamura, T, Kedar, S, Knapmeyer-Endrun, B, Margerin, L, Mimoun, D, Schmerr, N, Teanby, N, Weber, R, Hurst, K, Drilleau, M, Böse, M, Ceylan, S, Charalambous, C, van Driel, M, Horleston, A, Khan, A, Knapmeyer, M, Orhand-Mainsant, G, Stähler, S, Stott, A. E, Spiga, A, Fayon, L, Kenda, B, Brinkman, N, Lekic, V, Murdoch, N, Nunn, C, Schmelzbach, C, Schimmel, M, Stutzmann, E, Tauzin, B, Tharimena, S, Kedar, Sharon, Bowles, Neil, Bugby, David, Calcutt, Simon, Cutler, James, Elliott, John, Garcia, Raphael, Kawamura, Taichi, Lognonné, Philippe, Nunn, Ceri, Pike, W. Tom, Pont, Gabriel, de Raucourt, Sebastien, Standley, Ian, Walsh, William, Weber, Renee, and Yana, Charles
- Published
- 2021
11. Detection of Mars Normal Modes From S1222a Event and Seismic Hum
- Author
-
Lognonné, P., primary, Schimmel, M., additional, Stutzmann, E., additional, Davis, P., additional, Drilleau, M., additional, Sainton, G., additional, Kawamura, T., additional, Panning, M. P., additional, and Banerdt, W. B., additional
- Published
- 2023
- Full Text
- View/download PDF
12. Stratification of Heterogeneity in the Lithosphere of Mars From Envelope Modeling of Event S1222a and Near Impacts: Interpretation and Implications for Very‐High‐Frequency Events
- Author
-
Menina, S., primary, Margerin, L., additional, Kawamura, T., additional, Heller, G., additional, Drilleau, M., additional, Xu, Z., additional, Calvet, M., additional, Garcia, R. F., additional, Knapmeyer‐Endrun, B., additional, Carrasco, S., additional, Onodera, K., additional, Lognonné, P., additional, Stott, A., additional, and Banerdt, W. B., additional
- Published
- 2023
- Full Text
- View/download PDF
13. First observations of core-transiting seismic phases on Mars
- Author
-
Irving, J. C. E., Lekic, V., Durán, C., Drilleau, M., Kim, D., Rivoldini, A., Khan, A., Samuel, H., Antonangeli, D., Bruce Banerdt, W., Beghein, C., Bozdagk, E., Ceylan, S., Charalambous, C., Clinton, J., Davis, P., Garcia, R., Giardini, D., Catherine Horleston, A., Huang, Q., Hurst, K. J., Kawamura, T., King, Scott D., Knapmeyer, M., Li, J., Lognonné, P., Maguire, R., Panning, M. P., Plesa, A. C., Schimmel, M., Schmerr, N. C., Stählerc, S. C., Stutzmann, E., Xu, Z., Irving, J. C. E., Lekic, V., Durán, C., Drilleau, M., Kim, D., Rivoldini, A., Khan, A., Samuel, H., Antonangeli, D., Bruce Banerdt, W., Beghein, C., Bozdagk, E., Ceylan, S., Charalambous, C., Clinton, J., Davis, P., Garcia, R., Giardini, D., Catherine Horleston, A., Huang, Q., Hurst, K. J., Kawamura, T., King, Scott D., Knapmeyer, M., Li, J., Lognonné, P., Maguire, R., Panning, M. P., Plesa, A. C., Schimmel, M., Schmerr, N. C., Stählerc, S. C., Stutzmann, E., and Xu, Z.
- Abstract
We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars core. We observe core-Transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-Alloy core. Our inversions provide constraints on the velocities in Mars core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.
- Published
- 2023
14. Characterization of Martian Convective Vortices Using InSight's Seismic and Meteorological Data
- Author
-
Onodera, K., Nishida, Kiwamu, Kawamura, T., Murdoch, N., Otsuka, R., Drilleau, M., Schimmel, Martin, Carrasco, S., Sainton, G., Horleston, A., Tanaka, S., Mitani, T., Perrin, C., Stutzmann, Eléonore, Rodriguez, S., Lorenz, R., Spiga, A., Lognonné, Philippe, Banerdt, William Bruce, Onodera, K., Nishida, Kiwamu, Kawamura, T., Murdoch, N., Otsuka, R., Drilleau, M., Schimmel, Martin, Carrasco, S., Sainton, G., Horleston, A., Tanaka, S., Mitani, T., Perrin, C., Stutzmann, Eléonore, Rodriguez, S., Lorenz, R., Spiga, A., Lognonné, Philippe, and Banerdt, William Bruce
- Abstract
From Nov. 2018 to Dec. 2022, NASA's InSight (Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport) was operated on Mars to conduct seismic and meteorological observations. InSight¿s long quasicontinuous and high-temporal sampling observations have significantly improved our understandings of the inner structure, seismicity, and meteorological phenomena of the red planet (e.g., [1]-[8]). Prominent among these are convective vortices or dust devils.
- Published
- 2023
15. Description of Martian convective vortices observed by InSight and implications for vertical vortex structure and subsurface physical properties
- Author
-
NASA Astrobiology Institute (US), Centre National de la Recherche Scientifique (France), Japan Society for the Promotion of Science, Onodera, K., Nishida, Kiwamu, Kawamura, Taichi, Murdoch, Naomi, Drilleau, M., Otsuka, Ryoji, Lorenz, Ralph, Horleston, Anna, Widmer-Schnidrig, Rudolf, Schimmel, Martin, Rodriguez, Sebastien, Carrasco, Sebastián, Tanaka, Satoshi, Perrin, Clément, Lognonné, Philippe, Spiga, Aymeric, Banfield, Don, Panning, Mark, Banerdt, William Bruce, NASA Astrobiology Institute (US), Centre National de la Recherche Scientifique (France), Japan Society for the Promotion of Science, Onodera, K., Nishida, Kiwamu, Kawamura, Taichi, Murdoch, Naomi, Drilleau, M., Otsuka, Ryoji, Lorenz, Ralph, Horleston, Anna, Widmer-Schnidrig, Rudolf, Schimmel, Martin, Rodriguez, Sebastien, Carrasco, Sebastián, Tanaka, Satoshi, Perrin, Clément, Lognonné, Philippe, Spiga, Aymeric, Banfield, Don, Panning, Mark, and Banerdt, William Bruce
- Abstract
Convective vortices (whirlwinds) and dust devils (dust-loaded vortices) are one of the most common phenomena on Mars. They reflect the local thermodynamical structure of the atmosphere and are the driving force of the dust cycle. Additionally, they cause an elastic ground deformation, which is useful for retrieving the subsurface rigidity. Therefore, investigating convective vortices with the right instrumentation can lead to a better understanding of the Martian atmospheric structures as well as the subsurface physical properties. In this study, we quantitatively characterized the convective vortices detected by NASA's InSight (~13,000 events) using meteorological (e.g., pressure, wind speed, temperature) and seismic data. The evaluated parameters, such as the signal-to-noise ratio, event duration, asymmetricity of pressure drop profiles, and cross-correlation between seismic and pressure signals, are compiled as a catalog. Using these parameters, we investigated (a) the vortex structure and (b) the subsurface physical properties. Regarding the first topic, we tried to illustrate the vertical vortex structure and its link to the shape of the pressure profiles by combining the asymmetrical features seen in the observed pressure drops and the terrestrial observations of dust devils. Our results indicate that most of the vortices move with the wall tilted in the advection direction. Concerning the second topic, selecting the highly correlated events between pressure perturbation and ground response, we estimated the subsurface rigidity at the InSight landing site down to 100 m depth. Our results indicate that the subsurface structure can be modeled with two layers having a transition at 5¿15 m depth.
- Published
- 2023
16. First observations of core-Transiting seismic phases on Mars
- Author
-
Université Paris Cité, European Research Council, Irving, Jessica C. E., Lekic, Vedran, Duran, C., Drilleau, M., Kim, D., Rivoldini, A., Khan, A., Samuel, H., Antonangeli, D., Bruce Banerdt, W., Beghein, C., Bozdagk, E., Ceylan, S., Charalambous, C., Clinton, John, Davis, P., García, R., Giardini, Domenico, Catherine Horleston, A., Huang, Q., Hurst, Kenneth J., Kawamura, T., King, S. D., Knapmeyer, M., Li, J., Lognonné, Philippe, Maguire, R., Panning, M.P., Plesa, A.C., Schimmel, Martin, Schmerr, N. C., Stählerc, S. C., Stutzmann, Eléonore, Xu, Z., Université Paris Cité, European Research Council, Irving, Jessica C. E., Lekic, Vedran, Duran, C., Drilleau, M., Kim, D., Rivoldini, A., Khan, A., Samuel, H., Antonangeli, D., Bruce Banerdt, W., Beghein, C., Bozdagk, E., Ceylan, S., Charalambous, C., Clinton, John, Davis, P., García, R., Giardini, Domenico, Catherine Horleston, A., Huang, Q., Hurst, Kenneth J., Kawamura, T., King, S. D., Knapmeyer, M., Li, J., Lognonné, Philippe, Maguire, R., Panning, M.P., Plesa, A.C., Schimmel, Martin, Schmerr, N. C., Stählerc, S. C., Stutzmann, Eléonore, and Xu, Z.
- Abstract
We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars core. We observe core-Transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-Alloy core. Our inversions provide constraints on the velocities in Mars core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.
- Published
- 2023
17. Detection of Mars Normal Modes From S1222a Event and Seismic Hum
- Author
-
Agence Nationale de la Recherche (France), Lognonné, Philippe, Schimmel, Martin, Stutzmann, Eleonore, Davis, P., Drilleau, M., Sainton, G., Kawamura, T., Panning, M.P., Banerdt, W. B., Agence Nationale de la Recherche (France), Lognonné, Philippe, Schimmel, Martin, Stutzmann, Eleonore, Davis, P., Drilleau, M., Sainton, G., Kawamura, T., Panning, M.P., and Banerdt, W. B.
- Abstract
We present the first detection of normal modes on Mars using the vertical records from InSight's broad-band seismometer following the marsquake that occurred on sol 1222. The proposed catalog lists 60 potential eigenfrequencies between 3 and 12 mHz. Due to their low signal-to-noise ratio, these normal modes were detected using the phasor walkout approach. The normal modes amplitudes are consistent with the upper limit of the S1222a magnitude and with high quality factors. Additionally, we provide the first detection of a Martian hum before the quake for several of these frequencies. The proposed frequencies are at about 1-sigma of those predicted by published models based on body wave travel time inversions. Our detection of normal modes is the first made on a terrestrial planet other than Earth and opens the way for future interior models that incorporate both normal modes frequencies, surface waves velocities and body wave travel times.
- Published
- 2023
18. New discoveries about the cores of Mars and the Earth
- Author
-
Irving, J., Lekic, V., Duran, C., Drilleau, M., Kim, D., Rivoldini, A., Khan, A., Samuel, H., Cottaar, S., Horleston, A., Russell, S., Wu, W., and InSight Science Team, I.
- Abstract
More than one hundred years of seismological, mineralogical and geophysical research have shed light on the properties and evolution of Earth’s core. A liquid outer core, hosting the geodynamo, and a solid inner core, growing slowly at the expense of the outer core, together span roughly half of Earth’s diameter. The presence of a light-element enriched layer at the core-mantle interface, along with layering and lateral variation deeper in the core remain areas of active investigation.In contrast, the first confirmed marsquakes, detected by the InSight mission, were recorded only in 2019. Thus we have enjoyed only a few years of in-situ seismic observations of waves propagating through Mars’ interior. With well over a thousand seismic events detected in InSight’s operational life, seismic waves have been detected from marsquakes and impacts at large and small epicentral distances. Two seismic events have permitted the detection of core-transiting seismic (SKS) waves. These observations have enabled the estimation of the elastic properties of Mars’ liquid core and allowed inferences to be made about its composition, which is enriched in light elements when compared to Earth. This presentation will highlight new discoveries about Mars’ core and put them into context by comparing them with known and unknown features of Earth’s core., The 28th IUGG General Assembly (IUGG2023) (Berlin 2023)
- Published
- 2023
- Full Text
- View/download PDF
19. Author Correction: Geophysical evidence for an enriched molten silicate layer above Mars's core.
- Author
-
Samuel H, Drilleau M, Rivoldini A, Xu Z, Huang Q, Garcia RF, Lekić V, Irving JCE, Badro J, Lognonné PH, Connolly JAD, Kawamura T, Gudkova T, and Banerdt WB
- Published
- 2024
- Full Text
- View/download PDF
20. InSight: Mars Structure Service: Single-station and single-event marsquake inversions for structure using synthetic Martian waveforms
- Author
-
Panning, M, Beucler, E, Drilleau, M, Khan, A, Lognonné, P, Beghein, C, Xu, H, Menina, S, Barkaoui, S, Samuel, H, Stähler, S, van Driel, M, Ceylan, S, Kenda, B, Murdoch, N, Clinton, J, Giardini, D, Smrekar, S, Stutzmann, E, and Schimmel, M
- Published
- 2019
21. InSight: Mars Structure Service: Single-station and single-event marsquake inversions for structure using synthetic Martian waveforms
- Author
-
Schimmel, M, Stutzmann, E, Smrekar, S, Giardini, D, Clinton, J, Murdoch, N, Kenda, B, Ceylan, S, van Driel, M, Stähler, S, Samuel, H, Barkaoui, S, Menina, S, Xu, H, Beghein, C, Lognonné, P, Khan, A, Drilleau, M, Beucler, E, and Panning, M
- Abstract
UNKNOWN
- Published
- 2019
22. Observation of a Core‐Diffracted P‐Wave From a Farside Impact With Implications for the Lower‐Mantle Structure of Mars
- Author
-
Durán, C., primary, Khan, A., additional, Ceylan, S., additional, Charalambous, C., additional, Kim, D., additional, Drilleau, M., additional, Samuel, H., additional, and Giardini, D., additional
- Published
- 2022
- Full Text
- View/download PDF
23. Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation
- Author
-
Posiolova, L. V., primary, Lognonné, P., additional, Banerdt, W. B., additional, Clinton, J., additional, Collins, G. S., additional, Kawamura, T., additional, Ceylan, S., additional, Daubar, I. J., additional, Fernando, B., additional, Froment, M., additional, Giardini, D., additional, Malin, M. C., additional, Miljković, K., additional, Stähler, S. C., additional, Xu, Z., additional, Banks, M. E., additional, Beucler, É., additional, Cantor, B. A., additional, Charalambous, C., additional, Dahmen, N., additional, Davis, P., additional, Drilleau, M., additional, Dundas, C. M., additional, Durán, C., additional, Euchner, F., additional, Garcia, R. F., additional, Golombek, M., additional, Horleston, A., additional, Keegan, C., additional, Khan, A., additional, Kim, D., additional, Larmat, C., additional, Lorenz, R., additional, Margerin, L., additional, Menina, S., additional, Panning, M., additional, Pardo, C., additional, Perrin, C., additional, Pike, W. T., additional, Plasman, M., additional, Rajšić, A., additional, Rolland, L., additional, Rougier, E., additional, Speth, G., additional, Spiga, A., additional, Stott, A., additional, Susko, D., additional, Teanby, N. A., additional, Valeh, A., additional, Werynski, A., additional, Wójcicka, N., additional, and Zenhäusern, G., additional
- Published
- 2022
- Full Text
- View/download PDF
24. Surface waves and crustal structure on Mars
- Author
-
Kim, D., primary, Banerdt, W. B., additional, Ceylan, S., additional, Giardini, D., additional, Lekić, V., additional, Lognonné, P., additional, Beghein, C., additional, Beucler, É., additional, Carrasco, S., additional, Charalambous, C., additional, Clinton, J., additional, Drilleau, M., additional, Durán, C., additional, Golombek, M., additional, Joshi, R., additional, Khan, A., additional, Knapmeyer-Endrun, B., additional, Li, J., additional, Maguire, R., additional, Pike, W. T., additional, Samuel, H., additional, Schimmel, M., additional, Schmerr, N. C., additional, Stähler, S. C., additional, Stutzmann, E., additional, Wieczorek, M., additional, Xu, Z., additional, Batov, A., additional, Bozdag, E., additional, Dahmen, N., additional, Davis, P., additional, Gudkova, T., additional, Horleston, A., additional, Huang, Q., additional, Kawamura, T., additional, King, S. D., additional, McLennan, S. M., additional, Nimmo, F., additional, Plasman, M., additional, Plesa, A. C., additional, Stepanova, I. E., additional, Weidner, E., additional, Zenhäusern, G., additional, Daubar, I. J., additional, Fernando, B., additional, Garcia, R. F., additional, Posiolova, L. V., additional, and Panning, M. P., additional
- Published
- 2022
- Full Text
- View/download PDF
25. Venus Airglow Measurements and Orbiter for Seismicity (VAMOS): A SmallSat Mission Concept Study
- Author
-
Komjathy, A, Krishnamoorthy, S, Lognonné, P, Didion, A, Sutin, B, Wallace, M, Cutts, J, Makela, J, Grawe, M, Bougher, S, Kenda, B, Nakazono, B, Karp, A, Lantoine, G, Rud, M, Drilleau, M, and Helbert, Jörn
- Published
- 2018
26. Venus Airglow Measurements and Orbiter for Seismicity (VAMOS): A SmallSat Mission Concept Study
- Author
-
Helbert, Jörn, Drilleau, M, Rud, M, Lantoine, G, Karp, A, Nakazono, B, Kenda, B, Bougher, S, Grawe, M, Makela, J, Cutts, J, Wallace, M, Sutin, B, Didion, A, Lognonné, P, Krishnamoorthy, S, and Komjathy, A
- Abstract
UNKNOWN
- Published
- 2018
27. Venus Airglow Measurements and Orbiter for Seismicity (VAMOS): a mission concept study
- Author
-
Helbert, Jorn, Drilleau, M, Rud, M, Lantoine, G, Karp, A, Nakazono, B, Kenda, B, Bougher, S, Grawe, M, Makela, J, Cutts, J, Wallace, M, Sutin, B, Didion, A, Lognonne, P, Krishnamoorthy, S, and Komjathy, A
- Abstract
UNKNOWN
- Published
- 2018
28. Venus Airglow Measurements and Orbiter for Seismicity (VAMOS): a mission concept study
- Author
-
Komjathy, A, Krishnamoorthy, S, Lognonne, P, Didion, A, Sutin, B, Wallace, M, Cutts, J, Makela, J, Grawe, M, Bougher, S, Kenda, B, Nakazono, B, Karp, A, Lantoine, G, Rud, M, Drilleau, M, and Helbert, Jorn
- Published
- 2018
29. The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight
- Author
-
Clinton, J., Giardini, D., Böse, M., Ceylan, S., van Driel, M., Euchner, F., Garcia, R. F., Kedar, S., Khan, A., Stähler, S. C., Banerdt, B., Lognonne, P., Beucler, E., Daubar, I., Drilleau, M., Golombek, M., Kawamura, T., Knapmeyer, M., Knapmeyer-Endrun, B., Mimoun, D., Mocquet, A., Panning, M., Perrin, C., and Teanby, N. A.
- Published
- 2018
- Full Text
- View/download PDF
30. MSS/1: Single-Station and Single-Event Marsquake Inversion
- Author
-
Drilleau, M, Drilleau, M, Beucler, É, Lognonné, P, Panning, MP, Knapmeyer-Endrun, B, Banerdt, WB, Beghein, C, Ceylan, S, van Driel, M, Joshi, R, Kawamura, T, Khan, A, Menina, S, Rivoldini, A, Samuel, H, Stähler, S, Xu, H, Bonnin, M, Clinton, J, Giardini, D, Kenda, B, Lekic, V, Mocquet, A, Murdoch, N, Schimmel, M, Smrekar, SE, Stutzmann, É, Tauzin, B, Tharimena, S, Drilleau, M, Drilleau, M, Beucler, É, Lognonné, P, Panning, MP, Knapmeyer-Endrun, B, Banerdt, WB, Beghein, C, Ceylan, S, van Driel, M, Joshi, R, Kawamura, T, Khan, A, Menina, S, Rivoldini, A, Samuel, H, Stähler, S, Xu, H, Bonnin, M, Clinton, J, Giardini, D, Kenda, B, Lekic, V, Mocquet, A, Murdoch, N, Schimmel, M, Smrekar, SE, Stutzmann, É, Tauzin, B, and Tharimena, S
- Abstract
SEIS, the seismometer of the InSight mission, which landed on Mars on 26 November 2018, is monitoring the seismic activity of the planet. The goal of the Mars Structure Service (MSS) is to provide, as a mission product, the first average 1-D velocity model of Mars from the recorded InSight data. Prior to the mission, methodologies have been developed and tested to allow the location of the seismic events and estimation of the radial structure, using surface waves and body waves arrival times, and receiver functions. The paper describes these validation tests and compares the performance of the different algorithms to constrain the velocity model below the InSight station and estimate the 1-D average model over the great circle path between source and receiver. These tests were performed in the frame of a blind test, during which synthetic data were inverted. In order to propagate the data uncertainties on the output model distribution, Bayesian inversion techniques are mainly used. The limitations and strengths of the methods are assessed. The results show the potential of the MSS approach to retrieve the structure of the crust and underlying mantle. However, at this time, large quakes with clear surface waves have not yet been recorded by SEIS, which makes the estimation of the 1-D average seismic velocity model challenging. Additional locatable events, especially at large epicentral distances, and development of new techniques to fully investigate the data, will ultimately provide more constraints on the crust and mantle of Mars.
- Published
- 2020
31. Surface waves and crustal structure on Mars
- Author
-
Kim, D., Banerdt, W. B., Ceylan, S., Giardini, D., Lekic, V., Lognonne, P., Beghein, C., Beucler, E., Carrasco, S., Charalambous, C., Clinton, J., Drilleau, M., Duran, C., Golombek, M., Joshi, R., Khan, A., Knapmeyer-Endrun, B., Li, J., Maguire, R., Pike, W. T., Samuel, H., Schimmel, M., Schmerr, N. C., Stahler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Q., Kawamura, T., King, Scott D., McLennan, S. M., Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhausern, G., Daubar, I. J., Fernando, B., Garcia, R. F., Posiolova, L., Panning, M. P., Kim, D., Banerdt, W. B., Ceylan, S., Giardini, D., Lekic, V., Lognonne, P., Beghein, C., Beucler, E., Carrasco, S., Charalambous, C., Clinton, J., Drilleau, M., Duran, C., Golombek, M., Joshi, R., Khan, A., Knapmeyer-Endrun, B., Li, J., Maguire, R., Pike, W. T., Samuel, H., Schimmel, M., Schmerr, N. C., Stahler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Q., Kawamura, T., King, Scott D., McLennan, S. M., Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhausern, G., Daubar, I. J., Fernando, B., Garcia, R. F., Posiolova, L., and Panning, M. P.
- Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
32. Surface waves and crustal structure on Mars
- Author
-
ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., Panning, Mark P., ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., and Panning, Mark P.
- Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
33. Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation
- Author
-
Posiolova, L.V., Lognonné, P., Banerdt, W.B., Clinton, J., Collins, G.S., Kawamura, T., Ceylan, S., Daubar, I.J., Fernando, B., Froment, M., Giardini, D., Malin, M.C., Miljković, Katarina, Stähler, S.C., Xu, Z., Banks, M.E., Beucler, Cantor, B.A., Charalambous, C., Dahmen, N., Davis, P., Drilleau, M., Dundas, C.M., Durán, C., Euchner, F., Garcia, R.F., Golombek, M., Horleston, A., Keegan, C., Khan, A., Kim, D., Larmat, C., Lorenz, R., Margerin, L., Menina, S., Panning, M., Pardo, C., Perrin, C., Pike, W.T., Plasman, M., Rajšić, Andrea, Rolland, L., Rougier, E., Speth, G., Spiga, A., Stott, A., Susko, D., Teanby, N.A., Valeh, A., Werynski, A., Wójcicka, N., Zenhäusern, G., Posiolova, L.V., Lognonné, P., Banerdt, W.B., Clinton, J., Collins, G.S., Kawamura, T., Ceylan, S., Daubar, I.J., Fernando, B., Froment, M., Giardini, D., Malin, M.C., Miljković, Katarina, Stähler, S.C., Xu, Z., Banks, M.E., Beucler, Cantor, B.A., Charalambous, C., Dahmen, N., Davis, P., Drilleau, M., Dundas, C.M., Durán, C., Euchner, F., Garcia, R.F., Golombek, M., Horleston, A., Keegan, C., Khan, A., Kim, D., Larmat, C., Lorenz, R., Margerin, L., Menina, S., Panning, M., Pardo, C., Perrin, C., Pike, W.T., Plasman, M., Rajšić, Andrea, Rolland, L., Rougier, E., Speth, G., Spiga, A., Stott, A., Susko, D., Teanby, N.A., Valeh, A., Werynski, A., Wójcicka, N., and Zenhäusern, G.
- Abstract
Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars.
- Published
- 2022
34. An autonomous lunar geophysical experiment package (ALGEP) for future space missions: In response to Call for White Papers for the Voyage 2050 long-term plan in the ESA Science Program
- Author
-
Kawamura, T., Grott, M., Garcia, R., Wieczorek, M., de Raucourt, S., Lognonné, P., Bernauer, F., Breuer, D., Clinton, J., Delage, P., Drilleau, M., Ferraioli, L., Fuji, N., Horleston, A., Kletetschka, G., Knapmeyer, M., Knapmeyer-Endrun, B., Padovan, S., Plesa, A.C., Rivoldini, A., Robertsson, J., Rodriguez, S., Stähler, S.C., Stutzmann, E., Teanby, N.A., Tosi, N., Vrettos, C., Banerdt, B., Fa, W., Huang, Q., Irving, J., Ishihara, Y., Miljković, Katarina, Mittelholz, A., Nagihara, S., Neal, C., Qu, S., Schmerr, N., Tsuji, T., Kawamura, T., Grott, M., Garcia, R., Wieczorek, M., de Raucourt, S., Lognonné, P., Bernauer, F., Breuer, D., Clinton, J., Delage, P., Drilleau, M., Ferraioli, L., Fuji, N., Horleston, A., Kletetschka, G., Knapmeyer, M., Knapmeyer-Endrun, B., Padovan, S., Plesa, A.C., Rivoldini, A., Robertsson, J., Rodriguez, S., Stähler, S.C., Stutzmann, E., Teanby, N.A., Tosi, N., Vrettos, C., Banerdt, B., Fa, W., Huang, Q., Irving, J., Ishihara, Y., Miljković, Katarina, Mittelholz, A., Nagihara, S., Neal, C., Qu, S., Schmerr, N., and Tsuji, T.
- Abstract
Geophysical observations will provide key information about the inner structure of the planets and satellites and understanding the internal structure is a strong constraint on the bulk composition and thermal evolution of these bodies. Thus, geophysical observations are a key to uncovering the origin and evolution of the Moon. In this article, we propose the development of an autonomous lunar geophysical experiment package, composed of a suite of instruments and a central station with standardized interface, which can be installed on various future lunar missions. By fixing the interface between instruments and the central station, it would be possible to easily configure an appropriate experiment package for different missions. We describe here a series of geophysical instruments that may be included as part of the geophysical package: a seismometer, a magnetometer, a heat flow probe, and a laser reflector. These instruments will provide mechanical, thermal, and geodetic parameters of the Moon that are strongly related to the internal structure. We discuss the functionality required for future geophysical observations of the Moon, including the development of the central station that will be used commonly by different payloads.
- Published
- 2022
35. First observations of seismic waves travelling through the Martian core
- Author
-
Irving, J. C. E., Antonangeli, D., Banerdt, B., Beghein, C., Bozdag, E., Ceylan, S., Clinton, J., Drilleau, M., Duran, C., Garcia, Raphaël F., Giardini, D., Horleston, A., Huang, Quancheng, Hurst, K., Kawamura, T., Khan, A., Kim, D., King, S., Knapmeyer, Martin, Lekic, V., Li, J., Lognonne, P., Maguire, R., Panning, M., Plesa, Ana-Catalina, Rivoldini, A., Schimmel, M., Schmerr, N., Samuel, Henri, Stähler, S., Stutzmann, Éléonore, and Xu, Z.
- Subjects
Seismic waves ,Martian core ,Mars ,InSight - Published
- 2022
36. SEIS achievement for Mars Seismology after 1000 sols of seismic monitoring
- Author
-
Lognonne, P., Banerdt, William B., Giardini, D., Panning, M.P., Pike, W.T., Barakoui, S., Böse, Maren, Brinkman, Nienke, Charalambous, C., Compaire, Nicolas, Dahmen, N., Drilleau, M., Fernando, B., Garcia, R., Hobiger, M., Huang, Q., Hurst, K., Jacob, A., Karakostas, F., Kawamura, T., Kedar, S., Khan, A., Kim, D., Knapmeyer‐Endrun, Brigitte, Knapmeyer, Martin, Li, Jiaqi, Menina, S., Murdoch, N., Onodera, K, Perrin, C, Pou, L., Rajsic, A., Samuel, H., Savoie, D., Schimmel, M., Sollberger, D., Stähler, S., Stott, A., Gyalay, S, Van Driel, M., Wojcicka, N., Zweifel, P., Beghein, C., Beucler, E., Antonangeli, D., Banfield, D., Bowles, Neil, Bozdag, E., Christensen, Ulrich, Clinton, J., Collins, G., Daubar, I., Irving, J. C. E., Lorenz, R. D., Margerin, L., Michaut, Chloe, Mimoun, D., Nimmo, Francis, Plesa, Ana-Catalina, Schmerr, N., Smrekar, S., Spiga, A., Teanby, N., Tromp, J., Weber, R., Wieczorek, M., Agard, C., Barrett, Elizabeth, Berenguer, J.L., Ceylan, S., Conejero, V., Duran, C., Froment, M., Horleston, A., Ferrier, C., Fuji, N., Gabsi, T., Gaudin, E., Jaillant, B., Jullien, A., Meunier, F., Pardo, C., ten Pierick, J., Plasman, M., Rochas, L., Sainton, G., Stutzmann, Éléonore, Xu, Z., Yana, Charles, Zenhäusern, Geraldine, and InSight/SEIS, Science Team
- Subjects
Mars InSight SEIS - Published
- 2022
37. Crustal structure of Mars from the first observation of surface waves
- Author
-
Kim, D., Banerdt, W.B., Ceylan, S., Giardini, D., Lekic, V., Lognonne, P., Beghein, C., Beucler, E., Carrasco, S., Charalambous, C., Clinton, J., Drilleau, M., Duran, C., Golombek, M., Joshi, Rakshit, Khan, A., Knapmeyer-Endrun, B., Li, J., Maguire, R., Pike, W.T., Samuel, H., Schimmel, M., Schmerr, N., Stähler, S., Stutzmann, Éléonore, Wieczorek, M., Xu, Z., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, Ana-Catalina, Stepanova, I., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., Garcia, R., Posiolova, L., and Panning, M.
- Subjects
Mars ,Crustal structure ,Surface waves ,InSight - Published
- 2022
38. Geometry and Segmentation of Cerberus Fossae, Mars: Implications for Marsquake Properties
- Author
-
Perrin, C., primary, Jacob, A., additional, Lucas, A., additional, Myhill, R., additional, Hauber, E., additional, Batov, A., additional, Gudkova, T., additional, Rodriguez, S., additional, Lognonné, P., additional, Stevanović, J., additional, Drilleau, M., additional, and Fuji, N., additional
- Published
- 2022
- Full Text
- View/download PDF
39. Spin state and deep interior structure of Mars from InSight radio tracking.
- Author
-
Le Maistre S, Rivoldini A, Caldiero A, Yseboodt M, Baland RM, Beuthe M, Van Hoolst T, Dehant V, Folkner WM, Buccino D, Kahan D, Marty JC, Antonangeli D, Badro J, Drilleau M, Konopliv A, Péters MJ, Plesa AC, Samuel H, Tosi N, Wieczorek M, Lognonné P, Panning M, Smrekar S, and Banerdt WB
- Abstract
Knowledge of the interior structure and atmosphere of Mars is essential to understanding how the planet has formed and evolved. A major obstacle to investigations of planetary interiors, however, is that they are not directly accessible. Most of the geophysical data provide global information that cannot be separated into contributions from the core, the mantle and the crust. The NASA InSight mission changed this situation by providing high-quality seismic and lander radio science data
1,2 . Here we use the InSight's radio science data to determine fundamental properties of the core, mantle and atmosphere of Mars. By precisely measuring the rotation of the planet, we detected a resonance with a normal mode that allowed us to characterize the core and mantle separately. For an entirely solid mantle, we found that the liquid core has a radius of 1,835 ± 55 km and a mean density of 5,955-6,290 kg m-3 , and that the increase in density at the core-mantle boundary is 1,690-2,110 kg m-3 . Our analysis of InSight's radio tracking data argues against the existence of a solid inner core and reveals the shape of the core, indicating that there are internal mass anomalies deep within the mantle. We also find evidence of a slow acceleration in the Martian rotation rate, which could be the result of a long-term trend either in the internal dynamics of Mars or in its atmosphere and ice caps., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
40. The Polarization of Ambient Noise on Mars
- Author
-
Stutzmann, E., Schimmel, Martin, Lognonne, P., Horleston, Anna, Ceylan, S., van Driel, M., Stahler, Simon, Banerdt, B., Calvet, Marie, Charalambous, C., Clinton, John, Drilleau, M., Fayon, Lucile, Garcia, Raphael, Jacob, A., Kawamura, T., Kenda, B., Margerin, Ludovic, Murdoch, N., and Panning, Mark
- Subjects
Mars ,Seismology ,Physics::Geophysics - Abstract
vEGU21: Gather Online | 19–30 April 2021, Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the InSight seismometers.This noise can reach -200 dB and is 500 times lower than on Earth at night and it increases of 30 dB during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1Hz. We use the degree of polarization to extract signals with stable polarization independent of their amplitude and type of polarization. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane below 0.3 Hz (LF). Above 0.3 Hz (HF) and except in the evening, the ellipse is in the vertical plane and the major axis is tilted. While polarization azimuths are different in the two frequency bands, they both vary as a function of local hour and season. They are also correlated with wind direction, particularly during the daytime. We investigate possible aseismic and seismic origins of the polarized signals. Lander or tether noise can be discarded. Pressure fluctuations transported by wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission coming from high altitude at critical angle. Finally, in the evening when the wind is low, the polarized signals may correspond to the seismic wavefield of the Mars background noise.
- Published
- 2021
41. First observations of core-transiting seismic phases on Mars.
- Author
-
Irving JCE, Lekić V, Durán C, Drilleau M, Kim D, Rivoldini A, Khan A, Samuel H, Antonangeli D, Banerdt WB, Beghein C, Bozdağ E, Ceylan S, Charalambous C, Clinton J, Davis P, Garcia R, Domenico Giardini, Horleston AC, Huang Q, Hurst KJ, Kawamura T, King SD, Knapmeyer M, Li J, Lognonné P, Maguire R, Panning MP, Plesa AC, Schimmel M, Schmerr NC, Stähler SC, Stutzmann E, and Xu Z
- Abstract
We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars' core. We observe core-transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-alloy core. Our inversions provide constraints on the velocities in Mars' core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm
3 ) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core-mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars' core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.- Published
- 2023
- Full Text
- View/download PDF
42. One Martian Year of Seismic Monitoring of Mars by InSight: SEIS Results and Perspectives for the Extended Mission
- Author
-
Lognonne, P., Banerdt, B., Giardini, D., Panning, M., Pike, T., Antonangeli, D., Ballestra, J., Banfield, D., Beghein, C., Beucler, E., Bowles, Neil, Bozdag, E., Ceylan, S., Charalambous, C., Christensen, U., Clinton, J., Compaire, Nicolas, Collins, G., Dahmen, N., Daubar, I., van Driel, M, Drilleau, M., Fernando, B., Froment, M., Garcia, R., Irving, J., Khan, A., Kawamura, T., Kedar, S., Kenda, B., Knapmeyer-Endrun, B., Lorenz, R. D., Margerin, L., Martire, L., Michaut, C., Mimoun, D., Murdoch, N., Nimmo, F., Perrin, C, Plesa, Ana-Catalina, Schmerr, N., Scholz, J.-R., Smrekar, S., Sollberger, D., Spiga, A., Stähler, S., Stutzmann, Éléonore, Teanby, N., Tromp, J., Weber, R., Wieczorek, M., Wojcicka, N., Xu, H., Agard, C., Barrett, Elizabeth, Berenguer, J.L., Böse, Maren, Conejero, V., Horleston, A., Hurst, K., Ferrier, C., Fuji, N., Gabsi, T., Gaudin, E., Jaillant, B., Jullien, A., Karakostas, F., Labrot, P., Meunier, F., Pardo, C., ten Pierick, J., Plasman, Matthieu, Rochas, L., Sauron, A., Sainton, G., Xu, Z., Yana, Charles, and InSight/SEIS, Science Team
- Subjects
Mars ,SEIS ,InSight - Published
- 2021
43. Seismic detection of the martian core by InSight
- Author
-
Stähler, S., Ceylan, S., Duran, Andrea Cecilia, Garcia, Raphaël F., Giardini, D., Huang, Quancheng, Khan, Amir, Kim, Doyeon, Lognonne, P., Maguire, R., Marusiak, A, Plesa, Ana-Catalina, Samuel, H., Schmerr, N., Schimmel, M., Sollberger, D., Stutzmann, Éléonore, Antonangeli, D., Clinton, J., van Driel, M, Drilleau, M., Gudkova, T., Horleston, A., Irving, J., Kawamura, T., Lekic, V., Myhill, R., Nimmo, F., Panning, M., Rivoldini, A., Schmelzbach, C., Stanley, S., Weber, Renee, Xu, Zongbo, Zenhäusern, Geraldine, and Banerdt, B.
- Subjects
Core detection ,Mars ,Seismic measurements ,InSight - Abstract
A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state.
- Published
- 2021
44. The interior of Mars as seen by InSight (Invited)
- Author
-
Staehler, Simon C., Khan, A., Knapmeyer‐Endrun, Brigitte, Panning, Mark P., Banerdt, William B., Lognonné, P., Giardini, Domenico, Antonangeli, D., Beucler, E., Bissig, F., Bozdag, E., Brinkmann, N., Ceylan, S., Charalambous, C., Clinton, John F., Compaire, Nicolas, Dahmen, N. L., Davis, P., van Driel, M., Drilleau, M., Garcia, Raphael F., Huang, Quancheng, Joshi, Rakshit, Gudkova, T., Irving, Jessica C. E., Johnson, C., Kawamura, T., Kim, Doyeon, Knapmeyer, Martin, Maguire, R., Lekic, Vedran, Margerin, L., Marusiak, A, McLennan, S M, Mittelholz, A., Michaut, Chloe, Plasman, M., Pan, L., Duran, C., Perrin, C., Pike, T., Plesa, Ana-Catalina, Pinot, Baptiste, Rivoldini, A., Scholz, J.-R., Schimmel, Martin, Schmerr, N., Stutzmann, Éléonore, Samuel, H., Smrekar, S., Spohn, Tilman, Tauzin, B., Tharimena, S., Widmer-Schnidrig, R, Wieczorek, M., Xu, Zongbo, Zenhäusern, Geraldine, Karakostas, F., and InSight, Science Team
- Abstract
InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CMB
- Published
- 2021
45. Seismic detection of the martian core by InSight
- Author
-
Schimmel, Martin, Stähler, S. C., Savas, Ceylan, Duran, A. C., García, Raphael, Giardini, Domenico, Huang, Quancheng, Khan, A., Kim, Doyeon, Lognonné, P., Maguire, Ross, Marusiak, A. G., Plesa, A. C., Samuel, Henri, Schmerr, Nicholas C., Sollberger, David, Stutzmann, E., Antonangeli, D., Clinton, John F., van Driel, M., Drilleau, M., Gudkova, T., Horleston, Anna, Irving, J., Kawamura, T., Lekic, Vedran, Myhill, Robert, Nimmo, F., Panning, Mark, Rivoldini, A., Schmelzbach, C., Stanley, S., Weber, R., Xu, Zongbo, Zenhäusern, G., Banerdt, W. B., Schimmel, Martin, Stähler, S. C., Savas, Ceylan, Duran, A. C., García, Raphael, Giardini, Domenico, Huang, Quancheng, Khan, A., Kim, Doyeon, Lognonné, P., Maguire, Ross, Marusiak, A. G., Plesa, A. C., Samuel, Henri, Schmerr, Nicholas C., Sollberger, David, Stutzmann, E., Antonangeli, D., Clinton, John F., van Driel, M., Drilleau, M., Gudkova, T., Horleston, Anna, Irving, J., Kawamura, T., Lekic, Vedran, Myhill, Robert, Nimmo, F., Panning, Mark, Rivoldini, A., Schmelzbach, C., Stanley, S., Weber, R., Xu, Zongbo, Zenhäusern, G., and Banerdt, W. B.
- Abstract
A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state.
- Published
- 2021
46. The Polarization of Ambient Noise on Mars
- Author
-
Agence Nationale de la Recherche (France), UK Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), Schimmel, Martin [0000-0003-2601-4462], Stutzmann, E., Schimmel, Martin, Lognonné, P., Horleston, A., Ceylan, S., van Driel, M., Stähler, S., Banerdt, B., Calvet, M., Charalambous, C., Clinton, John F., Drilleau, M., Fayon, L., Garcia, R. F., Giardini, Domenico, Hurst, K., Jacob, A., Kawamura, T., Kenda, B., Margerin, L., Murdoch, N., Panning, M., Pike, T., Scholz, J. R., Spiga, A., Agence Nationale de la Recherche (France), UK Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), Schimmel, Martin [0000-0003-2601-4462], Stutzmann, E., Schimmel, Martin, Lognonné, P., Horleston, A., Ceylan, S., van Driel, M., Stähler, S., Banerdt, B., Calvet, M., Charalambous, C., Clinton, John F., Drilleau, M., Fayon, L., Garcia, R. F., Giardini, Domenico, Hurst, K., Jacob, A., Kawamura, T., Kenda, B., Margerin, L., Murdoch, N., Panning, M., Pike, T., Scholz, J. R., and Spiga, A.
- Abstract
Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the InSight seismometers. This noise can reach -200 dB. It is 500 times lower than on Earth at night and it increases of 30 dB during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1 Hz. We use the degree of polarization to extract signals with stable polarization independent of their amplitude and type of polarization. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane below 0.3 Hz. In the 0.3-1Hz high frequency band (HF) and except in the evening, the ellipse is in the vertical plane and the major axis is tilted. While polarization azimuths are different in the two frequency bands, they both vary as a function of local hour and season. They are also correlated with wind direction, particularly during the daytime. We investigate possible aseismic and seismic origins of the polarized signals. Lander or tether noise can be discarded. Pressure fluctuations transported by wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission coming from high altitude at critical angle. Finally, in the evening when the wind is low, the measured polarized signals may correspond to the seismic wavefield of the Mars background noise. Plain Language Summary Seismic noise at the surface of Mars was unknown until the first measurements by the seismometers from the InSight mission in January 2019. On Earth, the microseismic noise (0.05-1 Hz) is composed dominantly of surface waves generated by the numerous sources related to ocean wave activities. On Mars, because there is no ocean, seismic noise is down to 500 times lower than on Earth reaching -200 dB in acceleration at night. In order to deter
- Published
- 2021
47. Seismic Noise Autocorrelations on Mars
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Centre National de la Recherche Scientifique (France), Schimmel, Martin [0000-0003-2601-4462], Schimmel, Martin, Stutzmann, E., Lognonné, P., Compaire, Nicolas, Davis, Paul, Drilleau, M., García, Raphael, Kim, Doyeon, Knapmeyer‐Endrun, Brigitte, Lekic, Vedran, Margerin, Ludovic, Panning, M., Schmerr, N., Scholz, J. R., Spiga, A., Tauzin, Benoit, Banerdt, B., Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Centre National de la Recherche Scientifique (France), Schimmel, Martin [0000-0003-2601-4462], Schimmel, Martin, Stutzmann, E., Lognonné, P., Compaire, Nicolas, Davis, Paul, Drilleau, M., García, Raphael, Kim, Doyeon, Knapmeyer‐Endrun, Brigitte, Lekic, Vedran, Margerin, Ludovic, Panning, M., Schmerr, N., Scholz, J. R., Spiga, A., Tauzin, Benoit, and Banerdt, B.
- Abstract
Mars is the first extraterrestrial planet with seismometers (Seismic Experiment for Interior Structure, SEIS) deployed directly on its surface in the framework of the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission. The lack of strong Marsquakes, however, strengthens the need of seismic noise studies to additionally constrain the Martian structure. Seismic noise autocorrelations of single-station recordings permit the determination of the zero-offset reflection response underneath SEIS. We present a new autocorrelation study which employs state-of-the-art approaches to determine a robust reflection response by avoiding bias from aseismic signals which are recorded together with seismic waves due to unfavorable deployment and environmental conditions. Data selection and segmentation is performed in a data-adaptive manner which takes the data root-mean-square amplitude variability into account. We further use the amplitude-unbiased phase cross-correlation and work in the 1.2-8.9 Hz frequency band. The main target are crustal scale reflections, their robustness and convergence. The strongest signal appears at 10.6 s, and, if interpreted as a P-wave reflection, would correspond to a discontinuity at about 21 km depth. This signal is a likely candidate for a reflection from the base of the Martian crust due to its strength, polarity, and stability. Additionally we identify, among the stable signals, a signal at about 6.15 s that can be interpreted as the P-wave reflection from the mid-crust at about 9.5 km depth.
- Published
- 2021
48. Seismic detection of the martian core
- Author
-
NASA Jet Propulsion Laboratory, European Commission, Agence Nationale de la Recherche (France), Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), UK Space Agency, Stahler, S. C., Khan, A., Banerdt, W. B., Lognonné, P., Giardini, Domenico, Ceylan, S., Drilleau, M., Duran, A. C., Garcia, R. F., Huang, Q. C., Kim, D., Lekic, Vedran, Samuel, H., Schimmel, Martin, Schmerr, N., Sollberger, D., Stutzmann, E., Xu, Z. D., Antonangeli, D., Charalambous, C., Davis, P. M., Irving, Jessica C. E., Kawamura, T., Knapmeyer, M., Maguire, R., Marusiak, A. G., Panning, M.P., Perrin , C., Plesa, A. C., Rivoldini, A., Schmelzbach, C., Zenhausern, G., Beucler, E., Clinton, John F., Dahmen, N., van Driel, M., Gudkova, T., Horleston, A., Pike, William T., Plasman, M., Smrekar, S. E., NASA Jet Propulsion Laboratory, European Commission, Agence Nationale de la Recherche (France), Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), UK Space Agency, Stahler, S. C., Khan, A., Banerdt, W. B., Lognonné, P., Giardini, Domenico, Ceylan, S., Drilleau, M., Duran, A. C., Garcia, R. F., Huang, Q. C., Kim, D., Lekic, Vedran, Samuel, H., Schimmel, Martin, Schmerr, N., Sollberger, D., Stutzmann, E., Xu, Z. D., Antonangeli, D., Charalambous, C., Davis, P. M., Irving, Jessica C. E., Kawamura, T., Knapmeyer, M., Maguire, R., Marusiak, A. G., Panning, M.P., Perrin , C., Plesa, A. C., Rivoldini, A., Schmelzbach, C., Zenhausern, G., Beucler, E., Clinton, John F., Dahmen, N., van Driel, M., Gudkova, T., Horleston, A., Pike, William T., Plasman, M., and Smrekar, S. E.
- Abstract
Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 +/- 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.
- Published
- 2021
49. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data
- Author
-
Lognonné, P.; Banerdt, W.B.; Pike, W.T.; Giardini, D.; Christensen, U.; Garcia, R.F.; Kawamura, T.; Kedar, S.; Knapmeyer-Endrun, B.; Margerin, L.; Nimmo, F.; Panning, M.; Tauzin, B.; Scholz, J.R.; Antonangeli, D.; Barkaoui, S.; Beucler, E.; Bissig, F.; Brinkman, N.; Calvet, M.; Ceylan, S.; Charalambous, C.; Davis, P.; van Driel, M.; Drilleau, M.; Fayon, L.; Joshi, R.; Kenda, B.; Khan, A.; Knapmeyer, M.; Lekic, V.; McClean, J.; Mimoun, D.; Murdoch, N.; Pan, L.; Perrin, C.; Pinot, B.; Pou, L.; Menina, S.; Rodriguez, S.; Schmelzbach, C.; Schmerr, N.; Sollberger, D.; Spiga, A.; Stähler, S.; Stott, A.; Stutzmann, E.; Tharimena, S.; Widmer-Schnidrig, R.; Schimmel, M.; Rodriguez Manfredi, J.A. and Lognonné, P.; Banerdt, W.B.; Pike, W.T.; Giardini, D.; Christensen, U.; Garcia, R.F.; Kawamura, T.; Kedar, S.; Knapmeyer-Endrun, B.; Margerin, L.; Nimmo, F.; Panning, M.; Tauzin, B.; Scholz, J.R.; Antonangeli, D.; Barkaoui, S.; Beucler, E.; Bissig, F.; Brinkman, N.; Calvet, M.; Ceylan, S.; Charalambous, C.; Davis, P.; van Driel, M.; Drilleau, M.; Fayon, L.; Joshi, R.; Kenda, B.; Khan, A.; Knapmeyer, M.; Lekic, V.; McClean, J.; Mimoun, D.; Murdoch, N.; Pan, L.; Perrin, C.; Pinot, B.; Pou, L.; Menina, S.; Rodriguez, S.; Schmelzbach, C.; Schmerr, N.; Sollberger, D.; Spiga, A.; Stähler, S.; Stott, A.; Stutzmann, E.; Tharimena, S.; Widmer-Schnidrig, R.; Schimmel, M.; Rodriguez Manfredi, J.A.
- Abstract
Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.
- Published
- 2020
50. MSS/1: Single-Station and Single-Event Marsquake Inversion
- Author
-
California Institute of Technology, National Aeronautics and Space Administration (US), National Supercomputing Center of Tianjin, Swiss National Science Foundation, NASA Jet Propulsion Laboratory, Schimmel, Martin [0000-0003-2601-4462], Drilleau, M., Beucler, E., Lognonné, P., Panning, M.P., Knapmeyer‐Endrun, Brigitte, Banerdt, W. B., Beghein, C., Ceylan, S., van Driel, M., Joshi, R., Kawamura, T., Khan, A., Menina, S., Rivoldini, A., Samuel, H., Stähler, S., Xu, H., Bonnin, Mickaël, Clinton, John F., Giardini, Domenico, Kenda, B., Lekic, Vedran, Mocquet, A., Murdoch, N., Schimmel, Martin, Smrekar, S. E., Stutzmann, E., Tauzin, B., Tharimena, S., California Institute of Technology, National Aeronautics and Space Administration (US), National Supercomputing Center of Tianjin, Swiss National Science Foundation, NASA Jet Propulsion Laboratory, Schimmel, Martin [0000-0003-2601-4462], Drilleau, M., Beucler, E., Lognonné, P., Panning, M.P., Knapmeyer‐Endrun, Brigitte, Banerdt, W. B., Beghein, C., Ceylan, S., van Driel, M., Joshi, R., Kawamura, T., Khan, A., Menina, S., Rivoldini, A., Samuel, H., Stähler, S., Xu, H., Bonnin, Mickaël, Clinton, John F., Giardini, Domenico, Kenda, B., Lekic, Vedran, Mocquet, A., Murdoch, N., Schimmel, Martin, Smrekar, S. E., Stutzmann, E., Tauzin, B., and Tharimena, S.
- Abstract
SEIS, the seismometer of the InSight mission, which landed on Mars on 26 November 2018, is monitoring the seismic activity of the planet. The goal of the Mars Structure Service (MSS) is to provide, as a mission product, the first average 1-D velocity model of Mars from the recorded InSight data. Prior to the mission, methodologies have been developed and tested to allow the location of the seismic events and estimation of the radial structure, using surface waves and body waves arrival times, and receiver functions. The paper describes these validation tests and compares the performance of the different algorithms to constrain the velocity model below the InSight station and estimate the 1-D average model over the great circle path between source and receiver. These tests were performed in the frame of a blind test, during which synthetic data were inverted. In order to propagate the data uncertainties on the output model distribution, Bayesian inversion techniques are mainly used. The limitations and strengths of the methods are assessed. The results show the potential of the MSS approach to retrieve the structure of the crust and underlying mantle. However, at this time, large quakes with clear surface waves have not yet been recorded by SEIS, which makes the estimation of the 1-D average seismic velocity model challenging. Additional locatable events, especially at large epicentral distances, and development of new techniques to fully investigate the data, will ultimately provide more constraints on the crust and mantle of Mars. ©2020 The Authors.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.