Search

Your search keyword '"Cyclic S-Oxides pharmacology"' showing total 10 results

Search Constraints

Start Over You searched for: "Cyclic S-Oxides pharmacology" Remove constraint "Cyclic S-Oxides pharmacology"
10 results on '"Cyclic S-Oxides pharmacology"'

Search Results

1. Chloro-substituted 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel activators: impact of the position of the chlorine atom on the aromatic ring on activity and tissue selectivity.

2. Chloro-substituted 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel activators: impact of the position of the chlorine atom on the aromatic ring on activity and tissue selectivity.

3. Three-dimensional quantitative structure-activity relationships of ATP-sensitive potassium (KATP) channel openers belonging to the 3-alkylamino-4H-1,2,4-benzo- and 3-alkylamino-4H-1,2,4-pyridothiadiazine 1,1-dioxide families.

4. Three-dimensional quantitative structure-activity relationships of ATP-sensitive potassium (KATP) channel openers belonging to the 3-alkylamino-4H-1,2,4-benzo- and 3-alkylamino-4H-1,2,4-pyridothiadiazine 1,1-dioxide families.

5. 3-Alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel openers: effect of 6,7-disubstitution on potency and tissue selectivity.

6. 3-Alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel openers: effect of 6,7-disubstitution on potency and tissue selectivity.

7. BPDZ 154 activates adenosine 5'-triphosphate-sensitive potassium channels: in vitro studies using rodent insulin-secreting cells and islets isolated from patients with hyperinsulinism.

8. BPDZ 154 activates adenosine 5'-triphosphate-sensitive potassium channels: in vitro studies using rodent insulin-secreting cells and islets isolated from patients with hyperinsulinism.

9. 4H-1,2,4-Pyridothiadiazine 1,1-dioxides and 2,3-dihydro-4H-1,2, 4-pyridothiadiazine 1,1-dioxides chemically related to diazoxide and cyclothiazide as powerful positive allosteric modulators of (R/S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors: design, synthesis, pharmacology, and structure-activity relationships.

10. 4H-1,2,4-Pyridothiadiazine 1,1-dioxides and 2,3-dihydro-4H-1,2, 4-pyridothiadiazine 1,1-dioxides chemically related to diazoxide and cyclothiazide as powerful positive allosteric modulators of (R/S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors: design, synthesis, pharmacology, and structure-activity relationships.

Catalog

Books, media, physical & digital resources