Back to Search
Start Over
Treatments of Missing Data: A Monte Carlo Comparison of RBHDI, Iterative Stochastic Regression Imputation, and Expectation-Maximization.
- Source :
-
Structural Equation Modeling . 2000 7(3):319-355. - Publication Year :
- 2000
-
Abstract
- Describes a Monte Carlo investigation of four methods for treating incomplete data: (1) resemblance based hot-deck imputation (RBHDI); (2) iterated stochastic regression imputation; (3) structured model expectation maximization; and (4) saturated model expectation maximization. Results favored the expectation maximization methods. (SLD)
Details
- Language :
- English
- ISSN :
- 1070-5511
- Volume :
- 7
- Issue :
- 3
- Database :
- ERIC
- Journal :
- Structural Equation Modeling
- Publication Type :
- Academic Journal
- Accession number :
- EJ613928
- Document Type :
- Journal Articles<br />Reports - Descriptive<br />Reports - Evaluative