Back to Search Start Over

Treatments of Missing Data: A Monte Carlo Comparison of RBHDI, Iterative Stochastic Regression Imputation, and Expectation-Maximization.

Authors :
Gold, Michael Steven
Bentler, Peter M.
Source :
Structural Equation Modeling. 2000 7(3):319-355.
Publication Year :
2000

Abstract

Describes a Monte Carlo investigation of four methods for treating incomplete data: (1) resemblance based hot-deck imputation (RBHDI); (2) iterated stochastic regression imputation; (3) structured model expectation maximization; and (4) saturated model expectation maximization. Results favored the expectation maximization methods. (SLD)

Details

Language :
English
ISSN :
1070-5511
Volume :
7
Issue :
3
Database :
ERIC
Journal :
Structural Equation Modeling
Publication Type :
Academic Journal
Accession number :
EJ613928
Document Type :
Journal Articles<br />Reports - Descriptive<br />Reports - Evaluative