Back to Search
Start Over
Unsupervised Approach for Modeling Content Structures of MOOCs
- Source :
-
International Educational Data Mining Society . 2020. - Publication Year :
- 2020
-
Abstract
- With the increased number of MOOC offerings, it is unclear how these courses are related. Previous work has focused on capturing the prerequisite relationships between courses, lectures, and concepts. However, it is also essential to model the content structure of MOOC courses. Constructing a precedence graph that models the similarities and variations of learning paths followed by similar MOOCs would help both students and instructors. Students can personalize their learning by choosing the desired learning path and lectures across several courses guided by the precedence graph. Similarly, by examining the precedence graph, instructors can 1) identify knowledge gaps in their MOOC offerings, and 2) find alternative course plans. In this paper, we propose an unsupervised approach to build the precedence graph of similar MOOCs, where nodes are clusters of lectures with similar content, and edges depict alternative precedence relationships. Our approach to cluster similar lectures based on PCK-Means clustering algorithm that incorporates pairwise constraints: Must-Link and Cannot-Link with the standard K-Means algorithm. To build the precedence graph, we link the clusters according to the precedence relations mined from current MOOCs. Experiments over real-world MOOC data show that PCK-Means with our proposed pairwise constraints outperform the K-Means algorithm in both Adjusted Mutual Information (AMI) and Fowlkes-Mallows scores (FMI). [For the full proceedings, see ED607784.]
Details
- Language :
- English
- Database :
- ERIC
- Journal :
- International Educational Data Mining Society
- Publication Type :
- Conference
- Accession number :
- ED608062
- Document Type :
- Speeches/Meeting Papers<br />Reports - Descriptive