Back to Search Start Over

Low-Frequency Quantum Sensing

Authors :
Herbschleb, E.D.
Ohki, I.
Morita, K.
Yoshii, Y.
Kato, H.
Makino, T.
Yamasaki, S.
Mizuochi, N.
Herbschleb, E.D.
Ohki, I.
Morita, K.
Yoshii, Y.
Kato, H.
Makino, T.
Yamasaki, S.
Mizuochi, N.
Publication Year :
2022

Abstract

Exquisite sensitivities are a prominent advantage of quantum sensors. Ramsey sequences allow precise measurement of direct current fields, while Hahn-echo-like sequences measure alternating current fields. However, the latter are restrained for use with high-frequency fields (above approximately 1kHz) due to finite coherence times, leaving less-sensitive noncoherent methods for the low-frequency range. In this paper, we propose to bridge the gap with a fitting-based algorithm with a frequency-independent sensitivity to coherently measure low-frequency fields. As the algorithm benefits from coherence-based measurements, its demonstration with a single nitrogen-vacancy center gives a sensitivity of 9.4nT Hz⁻⁰.⁵ for frequencies below about 0.6kHz down to near-constant fields. To inspect the potential in various scenarios, we apply the algorithm at a background field of tens of nTs, and we measure low-frequency signals via synchronization.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1458641811
Document Type :
Electronic Resource