Back to Search
Start Over
Novel Endpoints To Unravel Developmental Neurotoxicity : From DNA methylation responses to methylmercury to the in vitro identification of endocrine disruptors
- Publication Year :
- 2024
-
Abstract
- The developing brain is especially sensitive to environmental stressors due to its dependence on the precise spatiotemporal regulation of multiple signals, and the long time period required for its formation. Some chemicals can interfere with molecular and cellular processes driving brain development, including epigenetic processes such as DNA methylation. Hence, identification of DNA methylation changes induced by chemical exposure may serve as early molecular markers for developmental neurotoxicity (DNT). Chemicals known as endocrine disruptors (EDCs) can produce adverse effects due to their capability to alter the endocrine system. Since brain development is highly dependent on endocrine signals, the potential adverse effects of EDCs on brain development needs to be addressed. Detection of DNT in the regulatory context has been based on in vivo testing, however, the financial costs and time intensive characteristics of these methods have resulted in a limited assessment of the DNT hazard of chemicals. In addition, in order to regulate EDCs, it is paramount to demonstrate that their adverse effects are a product of disruption of endocrine signals. Yet, at the moment, there are no approved methods which address both an endocrine mode of action and adverse neurodevelopmental outcomes. This doctoral thesis had two main aims: Firstly, to identify epigenetic changes, at the level of DNA methylation, underlying DNT induced by exposure to methylmercury (MeHg); and secondly, to develop new approach methods (NAMs) for the detection of DNT induced by endocrine disruption. Epigenetic effects were studied both in epidemiological data and experimentally in vitro. Associations between prenatal MeHg exposure and DNA methylation of GRIN2B and NR3C1 were found in children. In vitro validation of DNA methylation changes found in epigenome-wide association studies of populations exposed to MeHg, uncovered the potential involvement of the Mediator Complex Subunit 31 (MED31) in MeHg D
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1457634975
- Document Type :
- Electronic Resource