Back to Search Start Over

Monolithic Fabrication of On-Paper Self-Charging Power Systems Through Direct Ink Writing

Authors :
Su, Yingchun
Fu, Yujie
Chen, Shiqian
Li, Zheng
Xue, Han
Li, Jiantong
Su, Yingchun
Fu, Yujie
Chen, Shiqian
Li, Zheng
Xue, Han
Li, Jiantong
Publication Year :
2024

Abstract

The rapid development of emerging electronics requires power sources with the advantages of lightweight, high efficiency, and portability. Considering the use of critical raw materials (such as Li, Co, etc.) and the increasing global concern of battery waste, self-charging power systems (SCPSs) integrating energy harvesting, power management, and energy storage devices have been envisioned as promising solutions to replace traditional batteries to avoid the use of toxic materials and the need of frequent recharging/replacement. Up to date, the reported SCPSs still hold the problem of large form factor, unscalable fabrication, noble materials, and material complexity. In our work, a highly stable and eco-friendly organic conductive ink based on poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) has been developed for monolithic fabrication on-paper SCPSs almost fully through a simple direct ink writing (DIW) process. The ink possesses multiple functions and enables to directly print almost all the key components in the SCPSs, including electrodes for triboelectric nanogenerators (TENGs, mechanical energy harvesters), electrodes for micro-supercapacitors (MSCs, energy storage devices), and interconnects, on the same paper substrate in a monolithic manner without the need for “post-integration”. The monolithic printing process exhibits excellent upscaling capability for manufacturing. In particular, the direct patterning merit of the DIW process offers great flexibility in optimizing the system performance through adjusting the cell number, electrode dimension, and thickness of the MSC arrays. By adjusting the cell numbers, the MSC arrays attain high-rate capability up to 50 V/s to match the pulsing electricity produced from the TENGs. For small-size printed SCPSs (~ 2 cm × 3 cm ×1 mm), after continuous press and release of the TENGs for ~79000 cycles, the 3-cell series-connected MSC array can be charged to 1.6 V while 6-cell array to 3.0 V. For a lar<br />Part of ISBN 9789189896925QC 20240719

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1457579057
Document Type :
Electronic Resource