Back to Search
Start Over
A small-angle X-ray scattering study of amphiphilic drug self-assemblies in polyacrylate microgels
- Publication Year :
- 2024
-
Abstract
- Common ionisable amphiphilic drug molecules form micelles in aqueous solution. Loaded onto oppositely charged polyelectrolyte microgels they associate with the network chains to form dense complex phases. The self-assembling properties control the loading and release properties in drug delivery applications of microgel systems but little is known about the nature of the aggregates and the phase structure. In this paper, we investigated the size and organization of the self-assemblies formed by the hydrochloride salts of amitriptyline (AMT), chlorpromazine (CPZ), and doxepin (DXP) in sodium polyacrylate microgels. Small-angle X-ray scattering (SAXS) was used to determine the microstructure of drug loaded microgels in aqueous environment at ionic strengths relevant for drug loading (0.01 M) and release (0.15 M). The composition of drug loaded microgels was determined by means of a purpose built microscopy cell and UV spectroscopy measurements. Upon drug loading the microgels formed complex phases of low water content. SAXS experiments showed that the drugs formed oblate shaped or spherical micelles displaying local ordering but without long-range ordering even at very high micelle volume fractions. The local ordering resembled the packing of randomly packed hard oblates and spheres. The aggregation number of AMT varied between 10 and 49 depending on the composition. Incorporation of the uncharged base form of the drug caused a transformation of oblate shaped (aspect ratio ∼ 0.4) to spherical micelles, accompanied by an abrupt increase of the aggregation number. Variation of the ionic strength had minor effects on the aggregation number. CPZ formed oblate shape micelles (aspect ratios 0.3–0.4) with aggregation number between 9 and 30. DXP formed oblate shape micelles (aspect ratios 0.3–0.4) with aggregation numbers 10 − 11 at all studied compositions. The results provide a structural basis for, and justification of, previously assumed microstructures underlying mechani
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1457573123
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1016.j.colsurfa.2024.133403