Back to Search
Start Over
Machine learning-based prediction of cattle activity using sensor-based data
- Publication Year :
- 2024
-
Abstract
- Producción Científica<br />Livestock monitoring is a task traditionally carried out through direct observation by experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events that require human action, such as calving. However, this continuous monitoring is in many cases not feasible. In this work, we propose, develop and evaluate the accuracy of intelligent algorithms that operate on data obtained by low-cost sensors to determine the state of the animal in the terms used by the caregivers (grazing, ruminating, walking, etc.). The best results have been obtained using aggregations and averages of the time series with support vector classifiers and tree-based ensembles, reaching accuracies of 57% for the general behavior problem (4 classes) and 85% for the standing behavior problem (2 classes). This is a preliminary step to the realization of event-specific predictions.<br />Ministerio de Ciencia, Innovación y Universidades, Centro para el Desarrollo Tecnológico y la Innovación (CDTI) y Fondo Europeo de Desarrollo Regional (FEDER)- (grant CIVEX IDI-20180355 and CIVEX IDI-20180354)
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1456710227
- Document Type :
- Electronic Resource