Back to Search
Start Over
Effect of molecular models on viscosity and thermal conductivity calculations
- Source :
- School of Aeronautics and Astronautics Faculty Publications
- Publication Year :
- 2014
-
Abstract
- The effect of molecular models on viscosity and thermal conductivity calculations is investigated. The Direct Simulation Monte Carlo (DSMC) method for rarefied gas flows is used to simulateCouette and Fourier flows as a means of obtaining the transport coefficients. Experimentalmeasurements for argon (Ar) provide a baseline for comparison over a wide temperature range of 100–1,500 K. The variable hard sphere (VHS), variable soft sphere (VSS), and Lennard-Jones (L-J) molecular models have been implemented into a parallel version of Bird’s one-dimensional DSMC code, DSMC1, and the model parameters have been recalibrated to the current experimental data set. While the VHS and VSS models only consider the short-range, repulsive forces, the L-J model also includes constributions from the long-range, dispersion forces. Theoretical results for viscosity and thermal conductivity indicate the L-J model is more accurate than the VSS model; with maximum errors of 1.4% and 3.0% in the range 300–1,500 K for L-J and VSS models, respectively. The range of validity of the VSS model is extended to 1,650 K through appropriate choices for the model parameters.
Details
- Database :
- OAIster
- Journal :
- School of Aeronautics and Astronautics Faculty Publications
- Notes :
- application/pdf
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1455891891
- Document Type :
- Electronic Resource