Back to Search Start Over

Effect of molecular models on viscosity and thermal conductivity calculations

Authors :
Weaver, Andrew B
Alexeenko, Alina A
Weaver, Andrew B
Alexeenko, Alina A
Source :
School of Aeronautics and Astronautics Faculty Publications
Publication Year :
2014

Abstract

The effect of molecular models on viscosity and thermal conductivity calculations is investigated. The Direct Simulation Monte Carlo (DSMC) method for rarefied gas flows is used to simulateCouette and Fourier flows as a means of obtaining the transport coefficients. Experimentalmeasurements for argon (Ar) provide a baseline for comparison over a wide temperature range of 100–1,500 K. The variable hard sphere (VHS), variable soft sphere (VSS), and Lennard-Jones (L-J) molecular models have been implemented into a parallel version of Bird’s one-dimensional DSMC code, DSMC1, and the model parameters have been recalibrated to the current experimental data set. While the VHS and VSS models only consider the short-range, repulsive forces, the L-J model also includes constributions from the long-range, dispersion forces. Theoretical results for viscosity and thermal conductivity indicate the L-J model is more accurate than the VSS model; with maximum errors of 1.4% and 3.0% in the range 300–1,500 K for L-J and VSS models, respectively. The range of validity of the VSS model is extended to 1,650 K through appropriate choices for the model parameters.

Details

Database :
OAIster
Journal :
School of Aeronautics and Astronautics Faculty Publications
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1455891891
Document Type :
Electronic Resource