Back to Search
Start Over
FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1
- Source :
- Molecular Cell; vol 83, iss 16, 3010-3026.e8; 1097-2765
- Publication Year :
- 2023
-
Abstract
- The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.
Details
- Database :
- OAIster
- Journal :
- Molecular Cell; vol 83, iss 16, 3010-3026.e8; 1097-2765
- Notes :
- application/pdf, Molecular Cell vol 83, iss 16, 3010-3026.e8 1097-2765
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1453616643
- Document Type :
- Electronic Resource