Back to Search
Start Over
Detection of various gastrointestinal tract diseases through a deep learning method with ensemble ELM and explainable AI
- Publication Year :
- 2024
-
Abstract
- The rising prevalence of gastrointestinal (GI) tract disorders worldwide highlights the urgent need for precise diagnosis, as these diseases greatly affect human life and contribute to high mortality rates. Fast identification, accurate classification, and efficient treatment approaches are essential for addressing this critical health issue. Common side effects include abdominal pain, bloating, and discomfort, which can be chronic and debilitating. Nausea and vomiting are also frequent, leading to difficulties in maintaining adequate nutrition and hydration. The current study intends to develop a deep learning (DL)-based approach that automatically classifies GI tract diseases. For the first time, a GastroVision dataset with 8000 images of 27 different GI diseases was utilized in this work to design a computer-aided diagnosis (CAD) system. This study presents a novel lightweight feature extractor with a compact size and minimum number of layers named Parallel Depthwise Separable Convolutional Neural Network (PD-CNN) and a Pearson Correlation Coefficient (PCC) as the feature selector. Furthermore, a robust classifier named the Ensemble Extreme Learning Machine (EELM), combined with pseudo inverse ELM (ELM) and L1 Regularized ELM (RELM), has been proposed to identify diseases more precisely. A hybrid preprocessing technique, including scaling, normalization, and image enhancement techniques such as erosion, CLAHE, sharpening, and Gaussian filtering, are employed to enhance image representation and improve classification performance. The proposed approach consists of twenty-four layers and only 0.815 million parameters with a 9.79 MB model size. The proposed PD-CNN-PCC-EELM extracts essential features, reduces computational overhead, and achieves excellent classification performance on multiclass GI images. The PD-CNN-PCC-EELM achieved the highest precision, recall, f1, accuracy, ROC-AUC, and AUC-PR values of 88.12 ± 0.332 %, 87.75 ± 0.348 %, 87.12 ± 0.324 %, 87.75 %
Details
- Database :
- OAIster
- Notes :
- text, English, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1453276922
- Document Type :
- Electronic Resource