Back to Search Start Over

Parallel Sphere Decoding Algorithm for Long Prediction Horizon FCS-MPC

Authors :
Universidad de Sevilla. Departamento de Ingeniería Electrónica
Universidad de Sevilla. TIC109: Tecnología Electrónica
Universidad de Sevilla. TIC192: Ingeniería Electrónica.
Ministerio de Universidades. España
Zafra Ratia, Eduardo
Vázquez Pérez, Sergio
Regalo Núñez, Carlos
Baena Lecuyer, Vicente
Márquez Alcaide, Abraham
León Galván, José Ignacio
García Franquelo, Leopoldo
Universidad de Sevilla. Departamento de Ingeniería Electrónica
Universidad de Sevilla. TIC109: Tecnología Electrónica
Universidad de Sevilla. TIC192: Ingeniería Electrónica.
Ministerio de Universidades. España
Zafra Ratia, Eduardo
Vázquez Pérez, Sergio
Regalo Núñez, Carlos
Baena Lecuyer, Vicente
Márquez Alcaide, Abraham
León Galván, José Ignacio
García Franquelo, Leopoldo
Publication Year :
2022

Abstract

Research interest in finite control set model predictive control (FCS-MPC) for power conversion devices is growing in recent years. Particularly, long prediction horizon FCS-MPC provides promising results in recent research works. However, its practical implementation is not generally straightforward due to its inherently large computational burden. To overcome this obstacle, the problem can be formulated as a least-squares integer program. Sphere decoding algorithm (SDA) is a branch and bound algorithm proposed in previous works as an efficient approach to solve this problem. In these works, SDA is formulated as an iterative process where simultaneous search is not possible. A parallel and fully scalable SDA design is proposed in this paper. The design is implemented in the FPGA of a modern Field Programmable System on Chip (FPSoC) platform. Thanks to the proposed parallelization, the required execution time is greatly reduced. Experimental results prove the feasibility and performance improvements of the proposed implementation.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1453276241
Document Type :
Electronic Resource