Back to Search Start Over

MAMMOTH Massively Multilingual Modular Open Translation @ Helsinki

Authors :
Mickus, T
Gronroos, S
Attieh, J
Boggia, M
De Gibert, O
Ji, S
Loppi, N
Raganato, A
Vazquez, R
Tiedemann, J
Mickus T.
Gronroos S. -A.
Attieh J.
Boggia M.
De Gibert O.
Ji S.
Loppi N. A.
Raganato A.
Vazquez R.
Tiedemann J.
Mickus, T
Gronroos, S
Attieh, J
Boggia, M
De Gibert, O
Ji, S
Loppi, N
Raganato, A
Vazquez, R
Tiedemann, J
Mickus T.
Gronroos S. -A.
Attieh J.
Boggia M.
De Gibert O.
Ji S.
Loppi N. A.
Raganato A.
Vazquez R.
Tiedemann J.
Publication Year :
2024

Abstract

NLP in the age of monolithic large language models is approaching its limits in terms of size and information that can be handled. The trend goes to modularization, a necessary step into the direction of designing smaller sub-networks and components with specialized functionality. In this paper, we present the MAMMOTH toolkit: a framework designed for training massively multilingual modular machine translation systems at scale, initially derived from OpenNMT-py and then adapted to ensure efficient training across computation clusters. We showcase its efficiency across clusters of A100 and V100 NVIDIA GPUs, and discuss our design philosophy and plans for future information. The toolkit is publicly available online.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452808868
Document Type :
Electronic Resource