Back to Search Start Over

Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management

Authors :
Kell, Laurence T.
Mosqueira, Iago
Winker, Henning
Sharma, Rishi
Kitakado, Toshihide
Cardinale, Massimiliano
Kell, Laurence T.
Mosqueira, Iago
Winker, Henning
Sharma, Rishi
Kitakado, Toshihide
Cardinale, Massimiliano
Source :
ISSN: 1932-6203
Publication Year :
2024

Abstract

The Precautionary Approach to Fisheries Management requires an assessment of the impact of uncertainty on the risk of achieving management objectives. However, the main quantities, such as spawning stock biomass (SSB) and fish mortality (F), used in management metrics cannot be directly observed. This requires the use of models to provide guidance, for which there are three paradigms: the best assessment, model ensemble, and Management Strategy Evaluation (MSE). It is important to validate the models used to provide advice. In this study, we demonstrate how stock assessment models can be validated using a diagnostic toolbox, with a specific focus on prediction skill. Prediction skill measures the precision of a predicted value, which is unknown to the model, in relation to its observed value. By evaluating the accuracy of model predictions against observed data, prediction skill establishes an objective framework for accepting or rejecting model hypotheses, as well as for assigning weights to models within an ensemble. Our analysis uncovers the limitations of traditional stock assessment methods. Through the quantification of uncertainties and the integration of multiple models, our objective is to improve the reliability of management advice considering the complex interplay of factors that influence the dynamics of fish stocks

Details

Database :
OAIster
Journal :
ISSN: 1932-6203
Notes :
application/pdf, PLoS ONE 19 (2024) 7, ISSN: 1932-6203, ISSN: 1932-6203, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452795293
Document Type :
Electronic Resource