Back to Search Start Over

Fast boulder fracturing by thermal fatigue detected on stony asteroids

Authors :
Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Lucchetti, Alice
Cambioni, Saverio
Nakano, Ryota
Barnouin, Olivier
Pajola, Maurizio
Penasa, L.
Tusberti, Filippo
Ramesh, K. T.
Dotto, Elisabetta
Ernst, Carolyn
Daly, R. Terik
Mazzotta Epifani, Elena
Hirabayashi, Masatoshi
Parro, Laura M.
Poggiali, Giovanni
Campo Bagatin, Adriano
Ballouz, Ronald-Louis
Chabot, Nancy
Michel, Patrick
Murdoch, Naomi
Vincent, Jean-Baptiste
Karatekin, Ozgür
Rivkin, Andy
Sunshine, Jessica M.
Kohout, Tomas
Deshapriya, J. D. Prasanna
Hasselmann, Pedro H.
Ieva, Simone
Beccarelli, Joel
Ivanovski, Stavro
Rossi, Alessandro
Ferrari, Fabio
Rossi, C.
Raducan, Sabina D.
Steckloff, Jordan
Schwartz, Stephen R.
Brucato, John Robert
Dall’Ora, Massimo
Zinzi, Angelo
Cheng, Andy F.
Amoroso, Marilena
Bertini, Ivano
Capannolo, Andrea
Caporali, S.
Ceresoli, M.
Cremonese, Gabriele
Della Corte, Vincenzo
Gai, Igor
Gomez Casajus, L.
Gramigna, E.
Impresario, Gabriele
Lasagni Manghi, R.
Lavagna, Michèle
Lombardo, M.
Modenini, Dario
Palumbo, Pasquale
Perna, Davide
Pirrotta, Simone
Tortora, Paolo
Zannoni, Marco
Zanotti, Giovanni
Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Lucchetti, Alice
Cambioni, Saverio
Nakano, Ryota
Barnouin, Olivier
Pajola, Maurizio
Penasa, L.
Tusberti, Filippo
Ramesh, K. T.
Dotto, Elisabetta
Ernst, Carolyn
Daly, R. Terik
Mazzotta Epifani, Elena
Hirabayashi, Masatoshi
Parro, Laura M.
Poggiali, Giovanni
Campo Bagatin, Adriano
Ballouz, Ronald-Louis
Chabot, Nancy
Michel, Patrick
Murdoch, Naomi
Vincent, Jean-Baptiste
Karatekin, Ozgür
Rivkin, Andy
Sunshine, Jessica M.
Kohout, Tomas
Deshapriya, J. D. Prasanna
Hasselmann, Pedro H.
Ieva, Simone
Beccarelli, Joel
Ivanovski, Stavro
Rossi, Alessandro
Ferrari, Fabio
Rossi, C.
Raducan, Sabina D.
Steckloff, Jordan
Schwartz, Stephen R.
Brucato, John Robert
Dall’Ora, Massimo
Zinzi, Angelo
Cheng, Andy F.
Amoroso, Marilena
Bertini, Ivano
Capannolo, Andrea
Caporali, S.
Ceresoli, M.
Cremonese, Gabriele
Della Corte, Vincenzo
Gai, Igor
Gomez Casajus, L.
Gramigna, E.
Impresario, Gabriele
Lasagni Manghi, R.
Lavagna, Michèle
Lombardo, M.
Modenini, Dario
Palumbo, Pasquale
Perna, Davide
Pirrotta, Simone
Tortora, Paolo
Zannoni, Marco
Zanotti, Giovanni
Publication Year :
2024

Abstract

Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders’ fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA’s Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures’ preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452790797
Document Type :
Electronic Resource