Back to Search Start Over

Interpreting machine learning models for survival analysis: a study of cutaneous melanoma using the SEER database

Authors :
Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
Universitat Politècnica de Catalunya. IDEAI-UPC - Intelligent Data sciEnce and Artificial Intelligence Research Group
Hernández Pérez, Carlos
Pachón García, Cristian
Delicado Useros, Pedro Francisco
Vilaplana Besler, Verónica
Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
Universitat Politècnica de Catalunya. IDEAI-UPC - Intelligent Data sciEnce and Artificial Intelligence Research Group
Hernández Pérez, Carlos
Pachón García, Cristian
Delicado Useros, Pedro Francisco
Vilaplana Besler, Verónica
Publication Year :
2024

Abstract

In this study, we train and compare three types of machine learning algorithms for Survival Analysis: Random Survival Forest, DeepSurv and DeepHit, using the SEER database to model cutaneous malignant melanoma. Additionally, we employ SurvLIMEpy library, a Python package designed to provide explainability for survival machine learning models, to analyse feature importance. The results demonstrate that machine learning algorithms outperform the Cox Proportional Hazards Model. Our work underscores the importance of explainability methods for interpreting black-box models and provides insights into important features related to melanoma prognosis.<br />This research was supported by the Spanish Research Agency (AEI) under projects PID2020-116294GB-I00 and PID2020-116907RB-I00 of the call MCIN/ AEI /10.13039/501100011033, the project 718/C/2019 with id 201923-31 funded by Fundació la Marato de TV3 and the grant 2020 FI SDUR 306 funded by AGAUR.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
9 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452496825
Document Type :
Electronic Resource