Back to Search Start Over

Performance analysis of distributed GPU-accelerated task-based workflows

Authors :
Universitat Politècnica de Catalunya. Doctorat en Computació
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering
Nogueira Lobo de Carvalho, Marcos
Queralt Calafat, Anna
Romero Moral, Óscar
Simitsis, Alkis
Tatu, Cristian
Badia Sala, Rosa Maria
Universitat Politècnica de Catalunya. Doctorat en Computació
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering
Nogueira Lobo de Carvalho, Marcos
Queralt Calafat, Anna
Romero Moral, Óscar
Simitsis, Alkis
Tatu, Cristian
Badia Sala, Rosa Maria
Publication Year :
2024

Abstract

We present an empirical approach to identify the key factors affecting the execution performance of task-based workflows on a High Performance Computing (HPC) infrastructure composed of heterogeneous CPU-GPU clusters. Our results reveal that the execution performance in distributed GPU-accelerated task-based workflows highly depends on several interrelated factors regarding the task algorithm, dataset, resources, and system employed. In addition, our analysis identifies key correlations among these factors, presents novel observations, and offers guidelines toward designing an automated method to handle task-based workflows in modern, high-compute capacity, CPU-GPU engines.<br />This work has been partially supported by DEDS (H2020-MSCAITN2020) with grant agreement No. 955895, the EU-HORIZON programme CREXDATA under GA.101092749, the EU-HORIZON programme FAIR-CORE4EOSC under GA.101057264, the EUHORIZON programme EXTREMEXP under GA.101093164, the Spanish Government projects PID2019-107255GB and PID2020117191RB-I00/AEI/10.13039/501100011033andMCIN/AEI/10.13039 /501100011033 (CEX2021-001148-S), and by the Departament de Recerca i Universitats de la Generalitat de Catalunya (2021 SGR 00412, MPiEDist).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
14 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452496265
Document Type :
Electronic Resource