Back to Search
Start Over
Performance analysis of distributed GPU-accelerated task-based workflows
- Publication Year :
- 2024
-
Abstract
- We present an empirical approach to identify the key factors affecting the execution performance of task-based workflows on a High Performance Computing (HPC) infrastructure composed of heterogeneous CPU-GPU clusters. Our results reveal that the execution performance in distributed GPU-accelerated task-based workflows highly depends on several interrelated factors regarding the task algorithm, dataset, resources, and system employed. In addition, our analysis identifies key correlations among these factors, presents novel observations, and offers guidelines toward designing an automated method to handle task-based workflows in modern, high-compute capacity, CPU-GPU engines.<br />This work has been partially supported by DEDS (H2020-MSCAITN2020) with grant agreement No. 955895, the EU-HORIZON programme CREXDATA under GA.101092749, the EU-HORIZON programme FAIR-CORE4EOSC under GA.101057264, the EUHORIZON programme EXTREMEXP under GA.101093164, the Spanish Government projects PID2019-107255GB and PID2020117191RB-I00/AEI/10.13039/501100011033andMCIN/AEI/10.13039 /501100011033 (CEX2021-001148-S), and by the Departament de Recerca i Universitats de la Generalitat de Catalunya (2021 SGR 00412, MPiEDist).<br />Peer Reviewed<br />Postprint (published version)
Details
- Database :
- OAIster
- Notes :
- 14 p., application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1452496265
- Document Type :
- Electronic Resource