Back to Search Start Over

Vitamin D Receptor Deficiency Upregulates Pulmonary Artery Kv7 Channel Activity

Authors :
Olivencia Plaza, Miguel Ángel
Villegas Esguevillas, Marta
Sancho González, María
Barreira, Bianca
Paternoster, Elena
Adão, Rui
Larriba, María Jesús
Cogolludo Torralba, Ángel Luis
Pérez Vizcaíno, Francisco
Olivencia Plaza, Miguel Ángel
Villegas Esguevillas, Marta
Sancho González, María
Barreira, Bianca
Paternoster, Elena
Adão, Rui
Larriba, María Jesús
Cogolludo Torralba, Ángel Luis
Pérez Vizcaíno, Francisco
Publication Year :
2023

Abstract

Horizonte 2020. Marie-Curie Nº 847635.<br />Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr−/−). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr−/− mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr−/− mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr−/− mice, resembling animals and humans suffering from PAH.<br />European Commission<br />Instituto de Salud Carlos III (España)<br />Agencia Estatal de Investigación (España)<br />Universidad Complutense de Madrid<br />Depto. de Farmacología y Toxicología<br />Depto. de Fisiología<br />Fac. de Medicina<br />TRUE<br />pub<br />Descuento UCM

Details

Database :
OAIster
Notes :
application/pdf, 1422-0067, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1450549338
Document Type :
Electronic Resource