Back to Search Start Over

Principles of Intrinsic Motor Cortex Connectivity in Primates.

Authors :
Card, Nicholas
Card, Nicholas
Gharbawie, Omar
Card, Nicholas
Card, Nicholas
Gharbawie, Omar
Source :
The Journal of Neuroscience; vol 40, iss 22
Publication Year :
2020

Abstract

The forelimb representation in motor cortex (M1) is an important model system in contemporary neuroscience. Efforts to understand the organization of the M1 forelimb representation in monkeys have focused on inputs and outputs. In contrast, intrinsic M1 connections remain mostly unexplored, which is surprising given that intra-areal connections universally outnumber extrinsic connections. To address this knowledge gap, we first mapped the M1 forelimb representation with intracortical microstimulation (ICMS) in male squirrel monkeys. Next, we determined the connectivity of individual M1 sites with ICMS + intrinsic signal optical imaging (ISOI). Every stimulation site activated a distinctive pattern of patches (∼0.25 to 1.0 mm radius) that we quantified in relation to the motor map. Arm sites activated patches that were mostly in arm zones. Hand sites followed the same principle, but to a lesser extent. The results collectively indicate that preferential connectivity between functionally matched patches is a prominent organizational principle in M1. Connectivity patterns for a given site were conserved across a range of current amplitudes, train durations, pulse frequencies, and microelectrode depths. In addition, we found close correspondence in somatosensory cortex between connectivity that we revealed with ICMS+ISOI and connections known from tracers. ICMS+ISOI is therefore an effective tool for mapping cortical connectivity and is particularly advantageous for sampling large numbers of sites. This feature was instrumental in revealing the spatial specificity of intrinsic M1 connections, which appear to be woven into the somatotopic organization of the forelimb representation. Such a framework invokes the modular organization well-established for sensory cortical areas.SIGNIFICANCE STATEMENT Intrinsic connections are fundamental to the operations of any cortical area. Surprisingly little is known about the organization of intrinsic connections in motor cortex (M1).

Details

Database :
OAIster
Journal :
The Journal of Neuroscience; vol 40, iss 22
Notes :
application/pdf, The Journal of Neuroscience vol 40, iss 22
Publication Type :
Electronic Resource
Accession number :
edsoai.on1449593988
Document Type :
Electronic Resource