Back to Search Start Over

Integrated assessment model diagnostics: Key indicators and model evolution

Authors :
Harmsen, Mathijs
Kriegler, Elmar
Van Vuuren, Detlef P.
Van Der Wijst, Kaj Ivar
Luderer, Gunnar
Cui, Ryna
Dessens, Olivier
Drouet, Laurent
Emmerling, Johannes
Morris, Jennifer Faye
Fosse, Florian
Fragkiadakis, Dimitris
Fragkiadakis, Kostas
Fragkos, Panagiotis
Fricko, Oliver
Fujimori, Shinichiro
Gernaat, David
Guivarch, Céline
Iyer, Gokul
Karkatsoulis, Panagiotis
Keppo, Ilkka
Keramidas, Kimon
Köberle, Alexandre
Kolp, Peter
Krey, Volker
Krüger, Christoph
Leblanc, Florian
Mittal, Shivika
Paltsev, Sergey
Rochedo, Pedro
Van Ruijven, Bas J.
Sands, Ronald D.
Sano, Fuminori
Strefler, Jessica
Arroyo, Eveline Vasquez
Wada, Kenichi
Zakeri, Behnam
Harmsen, Mathijs
Kriegler, Elmar
Van Vuuren, Detlef P.
Van Der Wijst, Kaj Ivar
Luderer, Gunnar
Cui, Ryna
Dessens, Olivier
Drouet, Laurent
Emmerling, Johannes
Morris, Jennifer Faye
Fosse, Florian
Fragkiadakis, Dimitris
Fragkiadakis, Kostas
Fragkos, Panagiotis
Fricko, Oliver
Fujimori, Shinichiro
Gernaat, David
Guivarch, Céline
Iyer, Gokul
Karkatsoulis, Panagiotis
Keppo, Ilkka
Keramidas, Kimon
Köberle, Alexandre
Kolp, Peter
Krey, Volker
Krüger, Christoph
Leblanc, Florian
Mittal, Shivika
Paltsev, Sergey
Rochedo, Pedro
Van Ruijven, Bas J.
Sands, Ronald D.
Sano, Fuminori
Strefler, Jessica
Arroyo, Eveline Vasquez
Wada, Kenichi
Zakeri, Behnam
Source :
Environmental Research Letters vol.16 (2021) nr.5 p.1-12 [ISSN 1748-9318]
Publication Year :
2021

Abstract

Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45-61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.

Details

Database :
OAIster
Journal :
Environmental Research Letters vol.16 (2021) nr.5 p.1-12 [ISSN 1748-9318]
Notes :
DOI: 10.1088/1748-9326/abf964, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1445819358
Document Type :
Electronic Resource