Back to Search Start Over

Wind stilling ceased in the Iberian Peninsula since the 2000s

Authors :
Universitat Rovira i Virgili
Utrabo-Carazo E; Azorin-Molina C; Serrano E; Aguilar E; Brunet M; Guijarro JA
Universitat Rovira i Virgili
Utrabo-Carazo E; Azorin-Molina C; Serrano E; Aguilar E; Brunet M; Guijarro JA
Source :
Atmospheric Research; 10.1016/j.atmosres.2022.106153; Atmospheric Research. 272
Publication Year :
2022

Abstract

This study analyses quality controlled and homogenized near-surface wind speed series (SWS) at 87 meteorological stations distributed across Spain and Portugal for 1961–2019. Multidecadal variability analysis of both mean and gusts SWS confirms for the first time in the region the cessation of the stilling (decline of SWS) and a possible weak reversal phenomenon (increase in SWS) in the last decades, varying its onset from 1999 to 2018, depending on the season and variable. Different atmospheric circulation drivers are evaluated to explain the stilling and reversal phenomena. Among the chosen teleconnection indices, the Western Mediterranean Oscillation index (WeMOi) is the one that presents the highest (positive) correlation with SWS, although the correlation (negative) with the North Atlantic Oscillation index and the Mediterranean Oscillation index in winter is also statistically significant (p < 0.05). Results show that the interannual variability of the WeMOi could exert a strong influence on both the stilling and reversal phenomena, as it displays statistically significant negative trends for 1961–2010 and positive ones (non-significant) for 2010–2019, in agreement with the observed SWS trends. The use of the Jenkinson and Collison weather type classification reveals the marked influence of certain weather types in modulating SWS changes (i.e., west, northwest, and anticyclonic types). We proposed the increase in atmospheric thermal stability and the northward shift of the jet stream as principal causes of the stilling phenomenon in this region. Our results improve our understanding of wind changes, and highlight the importance of regional assessments to discern their socioeconomic and environmental impacts.

Details

Database :
OAIster
Journal :
Atmospheric Research; 10.1016/j.atmosres.2022.106153; Atmospheric Research. 272
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443574486
Document Type :
Electronic Resource