Back to Search Start Over

Generalized Conformable Fractional Newton-Type Method for Solving Nonlinear Systems

Authors :
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Agencia Estatal de Investigación
Universitat Politècnica de València
Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana
Candelario-Villalona, Giro Guillermo
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
Vassileva, María P.
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Agencia Estatal de Investigación
Universitat Politècnica de València
Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana
Candelario-Villalona, Giro Guillermo
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
Vassileva, María P.
Publication Year :
2023

Abstract

[EN] In a recent paper, a conformable fractional Newton-type method was proposed for solving nonlinear equations. This method involves a lower computational cost compared to other fractional iterative methods. Indeed, the theoretical order of convergence is held in practice, and it presents a better numerical behaviour than fractional Newton-type methods formerly proposed, even compared to classical Newton-Raphson method. In this work, we design a generalization of this method for solving nonlinear systems by using a new conformable fractional Jacobian matrix, and a suitable conformable Taylor power series; and it is compared with classical Newton's scheme. The necessary concepts and results are stated in order to design this method. Convergence analysis is made and a quadratic order of convergence is obtained, as in classical Newton's method. Numerical tests are made, and the Approximated Computational Order of Convergence (ACOC) supports the theory. Also, the proposed scheme shows good stability properties observed by means of convergence planes.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443150928
Document Type :
Electronic Resource