Back to Search Start Over

Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations

Authors :
Wang, Linwei
Dou, Qi
Fletcher, Thomas P
Speidel, Stefanie
Liu, Shuo; https://orcid.org/0000-0001-8238-7015
Wang, L ( Linwei )
Dou, Q ( Qi )
Fletcher, T P ( Thomas P )
Speidel, S ( Stefanie )
Liu, S ( Shuo )
Lüdke, David
Amiranashvili, Tamaz
Ambellan, Felix
Ezhov, Ivan
Menze, Bjoern H; https://orcid.org/0000-0003-4136-5690
Zachow, Stefan
Wang, Linwei
Dou, Qi
Fletcher, Thomas P
Speidel, Stefanie
Liu, Shuo; https://orcid.org/0000-0001-8238-7015
Wang, L ( Linwei )
Dou, Q ( Qi )
Fletcher, T P ( Thomas P )
Speidel, S ( Stefanie )
Liu, S ( Shuo )
Lüdke, David
Amiranashvili, Tamaz
Ambellan, Felix
Ezhov, Ivan
Menze, Bjoern H; https://orcid.org/0000-0003-4136-5690
Zachow, Stefan
Source :
Lüdke, David; Amiranashvili, Tamaz; Ambellan, Felix; Ezhov, Ivan; Menze, Bjoern H; Zachow, Stefan (2022). Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations. In: Wang, Linwei; Dou, Qi; Fletcher, Thomas P; Speidel, Stefanie; Liu, Shuo. Medical Image Computing and Computer Assisted Intervention : MICCAI 2022. Cham: Springer, 453-463.
Publication Year :
2022

Abstract

Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm).

Details

Database :
OAIster
Journal :
Lüdke, David; Amiranashvili, Tamaz; Ambellan, Felix; Ezhov, Ivan; Menze, Bjoern H; Zachow, Stefan (2022). Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations. In: Wang, Linwei; Dou, Qi; Fletcher, Thomas P; Speidel, Stefanie; Liu, Shuo. Medical Image Computing and Computer Assisted Intervention : MICCAI 2022. Cham: Springer, 453-463.
Notes :
application/pdf, info:doi/10.5167/uzh-230764, English, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443051300
Document Type :
Electronic Resource